{"title":"退化系统的周期性扰动","authors":"A. Calamai, M. Spadini","doi":"10.58997/ejde.2024.39","DOIUrl":null,"url":null,"abstract":"We study the structure of the set of harmonic solutions to T-periodically perturbed coupled differential equations on differentiable manifolds, where the perturbation is allowed to be of Caratheodory-type regularity. Employing degree-theoretic methods, we prove the existence of a noncompact connected set of nontrivial T-periodic solutions that, in a sense, emanates from the set of zeros of the unperturbed vector field. The latter is assumed to be ''degenerate'': Meaning that, contrary to the usual assumptions on the leading vector field, it is not required to be either trivial nor to have a compact set of zeros. In fact, known results in the ``nondegenerate case can be recovered from our ones. We also provide some illustrating examples of Lienard- and \\(\\phi\\)-Laplacian-type perturbed equations.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/39/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caratheodory periodic perturbations of degenerate systems\",\"authors\":\"A. Calamai, M. Spadini\",\"doi\":\"10.58997/ejde.2024.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the structure of the set of harmonic solutions to T-periodically perturbed coupled differential equations on differentiable manifolds, where the perturbation is allowed to be of Caratheodory-type regularity. Employing degree-theoretic methods, we prove the existence of a noncompact connected set of nontrivial T-periodic solutions that, in a sense, emanates from the set of zeros of the unperturbed vector field. The latter is assumed to be ''degenerate'': Meaning that, contrary to the usual assumptions on the leading vector field, it is not required to be either trivial nor to have a compact set of zeros. In fact, known results in the ``nondegenerate case can be recovered from our ones. We also provide some illustrating examples of Lienard- and \\\\(\\\\phi\\\\)-Laplacian-type perturbed equations.\\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/39/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.39\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.39","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究可微分流形上 T 周期扰动耦合微分方程谐波解集的结构,其中允许扰动具有 Caratheodory 型正则性。 利用度理论方法,我们证明了一个非紧凑连通的 T 周期解集合的存在性,从某种意义上说,该集合来自未扰动向量场的零点集合。假设后者是 "退化的":这意味着,与通常对前导矢量场的假设相反,它既不要求是琐碎的,也不要求有紧凑的零点集。 事实上,"非退化 "情况下的已知结果可以从我们的结果中恢复。 我们还提供了一些Lienard-和\(\phi\)-Laplacian-type perturbed方程的示例。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2024/39/abstr.html。
Caratheodory periodic perturbations of degenerate systems
We study the structure of the set of harmonic solutions to T-periodically perturbed coupled differential equations on differentiable manifolds, where the perturbation is allowed to be of Caratheodory-type regularity. Employing degree-theoretic methods, we prove the existence of a noncompact connected set of nontrivial T-periodic solutions that, in a sense, emanates from the set of zeros of the unperturbed vector field. The latter is assumed to be ''degenerate'': Meaning that, contrary to the usual assumptions on the leading vector field, it is not required to be either trivial nor to have a compact set of zeros. In fact, known results in the ``nondegenerate case can be recovered from our ones. We also provide some illustrating examples of Lienard- and \(\phi\)-Laplacian-type perturbed equations.
For more information see https://ejde.math.txstate.edu/Volumes/2024/39/abstr.html
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.