退化系统的周期性扰动

IF 0.8 4区 数学 Q2 MATHEMATICS
A. Calamai, M. Spadini
{"title":"退化系统的周期性扰动","authors":"A. Calamai, M. Spadini","doi":"10.58997/ejde.2024.39","DOIUrl":null,"url":null,"abstract":"We study the structure of the set of harmonic solutions to T-periodically  perturbed coupled differential equations on differentiable manifolds, where the  perturbation is allowed to be of Caratheodory-type regularity.  Employing degree-theoretic methods, we prove the existence of a noncompact connected  set of nontrivial T-periodic solutions that, in a sense, emanates from the set of zeros of the unperturbed vector field. The latter is assumed to be ''degenerate'': Meaning that, contrary to the usual assumptions on the leading vector field,  it is not required to be either trivial nor to have a compact set of zeros.  In fact, known results in the ``nondegenerate case can be recovered from our ones.  We also provide some illustrating examples of Lienard- and \\(\\phi\\)-Laplacian-type  perturbed equations.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/39/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caratheodory periodic perturbations of degenerate systems\",\"authors\":\"A. Calamai, M. Spadini\",\"doi\":\"10.58997/ejde.2024.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the structure of the set of harmonic solutions to T-periodically  perturbed coupled differential equations on differentiable manifolds, where the  perturbation is allowed to be of Caratheodory-type regularity.  Employing degree-theoretic methods, we prove the existence of a noncompact connected  set of nontrivial T-periodic solutions that, in a sense, emanates from the set of zeros of the unperturbed vector field. The latter is assumed to be ''degenerate'': Meaning that, contrary to the usual assumptions on the leading vector field,  it is not required to be either trivial nor to have a compact set of zeros.  In fact, known results in the ``nondegenerate case can be recovered from our ones.  We also provide some illustrating examples of Lienard- and \\\\(\\\\phi\\\\)-Laplacian-type  perturbed equations.\\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/39/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.39\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.39","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究可微分流形上 T 周期扰动耦合微分方程谐波解集的结构,其中允许扰动具有 Caratheodory 型正则性。 利用度理论方法,我们证明了一个非紧凑连通的 T 周期解集合的存在性,从某种意义上说,该集合来自未扰动向量场的零点集合。假设后者是 "退化的":这意味着,与通常对前导矢量场的假设相反,它既不要求是琐碎的,也不要求有紧凑的零点集。 事实上,"非退化 "情况下的已知结果可以从我们的结果中恢复。 我们还提供了一些Lienard-和\(\phi\)-Laplacian-type perturbed方程的示例。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2024/39/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Caratheodory periodic perturbations of degenerate systems
We study the structure of the set of harmonic solutions to T-periodically  perturbed coupled differential equations on differentiable manifolds, where the  perturbation is allowed to be of Caratheodory-type regularity.  Employing degree-theoretic methods, we prove the existence of a noncompact connected  set of nontrivial T-periodic solutions that, in a sense, emanates from the set of zeros of the unperturbed vector field. The latter is assumed to be ''degenerate'': Meaning that, contrary to the usual assumptions on the leading vector field,  it is not required to be either trivial nor to have a compact set of zeros.  In fact, known results in the ``nondegenerate case can be recovered from our ones.  We also provide some illustrating examples of Lienard- and \(\phi\)-Laplacian-type  perturbed equations. For more information see https://ejde.math.txstate.edu/Volumes/2024/39/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信