无限域上的平滑逻辑实数和复数、普通和分数神经网络近似值

Axioms Pub Date : 2024-07-09 DOI:10.3390/axioms13070462
G. Anastassiou
{"title":"无限域上的平滑逻辑实数和复数、普通和分数神经网络近似值","authors":"G. Anastassiou","doi":"10.3390/axioms13070462","DOIUrl":null,"url":null,"abstract":"In this work, we study the univariate quantitative smooth approximations, including both real and complex and ordinary and fractional approximations, under different functions. The approximators presented here are neural network operators activated by Richard’s curve, a parametrized form of logistic sigmoid function. All domains used are obtained from the whole real line. The neural network operators used here are of the quasi-interpolation type: basic ones, Kantorovich-type ones, and those of the quadrature type. We provide pointwise and uniform approximations with rates. We finish with their applications.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"124 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth Logistic Real and Complex, Ordinary and Fractional Neural Network Approximations over Infinite Domains\",\"authors\":\"G. Anastassiou\",\"doi\":\"10.3390/axioms13070462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the univariate quantitative smooth approximations, including both real and complex and ordinary and fractional approximations, under different functions. The approximators presented here are neural network operators activated by Richard’s curve, a parametrized form of logistic sigmoid function. All domains used are obtained from the whole real line. The neural network operators used here are of the quasi-interpolation type: basic ones, Kantorovich-type ones, and those of the quadrature type. We provide pointwise and uniform approximations with rates. We finish with their applications.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"124 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了不同函数下的单变量定量平滑逼近,包括实数逼近和复数逼近,以及普通逼近和分数逼近。这里介绍的近似值是由理查德曲线激活的神经网络算子,理查德曲线是对数 sigmoid 函数的参数化形式。所有使用的域都是从整个实线中获得的。这里使用的神经网络算子属于准插值类型:基本算子、康托洛维奇类型算子和正交类型算子。我们提供了带速率的点逼近和均匀逼近。最后,我们将介绍它们的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth Logistic Real and Complex, Ordinary and Fractional Neural Network Approximations over Infinite Domains
In this work, we study the univariate quantitative smooth approximations, including both real and complex and ordinary and fractional approximations, under different functions. The approximators presented here are neural network operators activated by Richard’s curve, a parametrized form of logistic sigmoid function. All domains used are obtained from the whole real line. The neural network operators used here are of the quasi-interpolation type: basic ones, Kantorovich-type ones, and those of the quadrature type. We provide pointwise and uniform approximations with rates. We finish with their applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信