D. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro
{"title":"具有规定光学几何的洛伦兹流形的 Levi-Civita 连接","authors":"D. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro","doi":"10.56754/0719-0646.2602.239","DOIUrl":null,"url":null,"abstract":"We explicitly derive the Christoffel symbols in terms of adapted frame fields for the Levi-Civita connection of a Lorentzian \\(n\\)-manifold \\((M, g)\\), equipped with a prescribed optical geometry of Kähler-Sasaki type. The formulas found in this paper have several important applications, such as determining the geometric invariants of Lorentzian manifolds with prescribed optical geometries or solving curvature constraints.","PeriodicalId":505448,"journal":{"name":"Cubo (Temuco)","volume":"110 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries\",\"authors\":\"D. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro\",\"doi\":\"10.56754/0719-0646.2602.239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explicitly derive the Christoffel symbols in terms of adapted frame fields for the Levi-Civita connection of a Lorentzian \\\\(n\\\\)-manifold \\\\((M, g)\\\\), equipped with a prescribed optical geometry of Kähler-Sasaki type. The formulas found in this paper have several important applications, such as determining the geometric invariants of Lorentzian manifolds with prescribed optical geometries or solving curvature constraints.\",\"PeriodicalId\":505448,\"journal\":{\"name\":\"Cubo (Temuco)\",\"volume\":\"110 42\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo (Temuco)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2602.239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo (Temuco)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2602.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries
We explicitly derive the Christoffel symbols in terms of adapted frame fields for the Levi-Civita connection of a Lorentzian \(n\)-manifold \((M, g)\), equipped with a prescribed optical geometry of Kähler-Sasaki type. The formulas found in this paper have several important applications, such as determining the geometric invariants of Lorentzian manifolds with prescribed optical geometries or solving curvature constraints.