旋转盘电极技术研究碘酸 6 电子电还原的自催化动力学

Catalysts Pub Date : 2024-07-09 DOI:10.3390/catal14070437
Liliya Antipova, Oleg Tripachev, Alexandra Rybakova, Vladimir Andreev, R. Pichugov, George Sudarev, Anatoly Antipov, Alexander Modestov
{"title":"旋转盘电极技术研究碘酸 6 电子电还原的自催化动力学","authors":"Liliya Antipova, Oleg Tripachev, Alexandra Rybakova, Vladimir Andreev, R. Pichugov, George Sudarev, Anatoly Antipov, Alexander Modestov","doi":"10.3390/catal14070437","DOIUrl":null,"url":null,"abstract":"The 6-electron electrochemical reduction of IO3− to I− represents a breakthrough for the development of next-generation redox flow batteries, offering substantially higher energy densities for oxidizer storage. Our study reveals that on a glassy carbon (GC) electrode in acidic electrolytes, HIO3 undergoes an autocatalyzed electrochemical reduction to I−. This process is mediated by the formation of a thin iodine layer on the electrode, acting as an intermediate and a catalyst. Under steady-state conditions, the iodine layer forms via a comproportionation reaction (HIO3 + I− + 5H+ = I2 (s) + 3H2O). Initially, the iodine layer is generated through the slow direct electrochemical reduction of HIO3 on pristine GC. Once established, this layer significantly enhances the rate of iodate reduction. On voltammetry curves, it is clearly observable as a step-wise current surge to reach a plateau. The limiting current density on the GC seemingly aligns with the Levich equation, varying with the RDE rotation rate. Earlier, we demonstrated the electrochemical oxidation of I− back to HIO3 using an H2/HIO3 flow cell, showcasing a full cycle that underpins the feasibility of this approach for energy storage. This study advances the understanding of iodate electroreduction and underscores its role in enhancing the capacity of next-generation energy storage systems.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":"112 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autocatalyzed Kinetics of 6-Electron Electroreduction of Iodic Acid Studied by Rotating Disk Electrode Technique\",\"authors\":\"Liliya Antipova, Oleg Tripachev, Alexandra Rybakova, Vladimir Andreev, R. Pichugov, George Sudarev, Anatoly Antipov, Alexander Modestov\",\"doi\":\"10.3390/catal14070437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 6-electron electrochemical reduction of IO3− to I− represents a breakthrough for the development of next-generation redox flow batteries, offering substantially higher energy densities for oxidizer storage. Our study reveals that on a glassy carbon (GC) electrode in acidic electrolytes, HIO3 undergoes an autocatalyzed electrochemical reduction to I−. This process is mediated by the formation of a thin iodine layer on the electrode, acting as an intermediate and a catalyst. Under steady-state conditions, the iodine layer forms via a comproportionation reaction (HIO3 + I− + 5H+ = I2 (s) + 3H2O). Initially, the iodine layer is generated through the slow direct electrochemical reduction of HIO3 on pristine GC. Once established, this layer significantly enhances the rate of iodate reduction. On voltammetry curves, it is clearly observable as a step-wise current surge to reach a plateau. The limiting current density on the GC seemingly aligns with the Levich equation, varying with the RDE rotation rate. Earlier, we demonstrated the electrochemical oxidation of I− back to HIO3 using an H2/HIO3 flow cell, showcasing a full cycle that underpins the feasibility of this approach for energy storage. This study advances the understanding of iodate electroreduction and underscores its role in enhancing the capacity of next-generation energy storage systems.\",\"PeriodicalId\":505577,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"112 38\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14070437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14070437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

IO3- 通过 6 电子电化学还原为 I-,为下一代氧化还原液流电池的开发带来了突破性进展,为氧化剂存储提供了更高的能量密度。我们的研究发现,在酸性电解质中的玻璃碳(GC)电极上,HIO3 会自动催化电化学还原为 I-。这一过程是由电极上形成的碘薄层作为中间体和催化剂介导的。在稳态条件下,碘层通过比例反应(HIO3 + I- + 5H+ = I2 (s) + 3H2O)形成。最初,碘层是通过 HIO3 在原始 GC 上缓慢的直接电化学还原反应生成的。碘层一旦形成,就会大大提高碘酸盐的还原速率。在伏安曲线上,可以清楚地观察到电流阶跃式上升,最终达到一个高点。GC 上的极限电流密度似乎与列维奇方程一致,随 RDE 旋转率的变化而变化。早些时候,我们使用 H2/HIO3 流动池演示了 I- 返回到 HIO3 的电化学氧化过程,展示了一个完整的循环,证明了这种方法在能量存储方面的可行性。这项研究加深了人们对碘酸盐电还原的理解,并强调了它在提高下一代储能系统容量方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autocatalyzed Kinetics of 6-Electron Electroreduction of Iodic Acid Studied by Rotating Disk Electrode Technique
The 6-electron electrochemical reduction of IO3− to I− represents a breakthrough for the development of next-generation redox flow batteries, offering substantially higher energy densities for oxidizer storage. Our study reveals that on a glassy carbon (GC) electrode in acidic electrolytes, HIO3 undergoes an autocatalyzed electrochemical reduction to I−. This process is mediated by the formation of a thin iodine layer on the electrode, acting as an intermediate and a catalyst. Under steady-state conditions, the iodine layer forms via a comproportionation reaction (HIO3 + I− + 5H+ = I2 (s) + 3H2O). Initially, the iodine layer is generated through the slow direct electrochemical reduction of HIO3 on pristine GC. Once established, this layer significantly enhances the rate of iodate reduction. On voltammetry curves, it is clearly observable as a step-wise current surge to reach a plateau. The limiting current density on the GC seemingly aligns with the Levich equation, varying with the RDE rotation rate. Earlier, we demonstrated the electrochemical oxidation of I− back to HIO3 using an H2/HIO3 flow cell, showcasing a full cycle that underpins the feasibility of this approach for energy storage. This study advances the understanding of iodate electroreduction and underscores its role in enhancing the capacity of next-generation energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信