单晶氮化铝的干法和湿法蚀刻

Hsiao-Hsuan Wan, Chiao-Ching Chiang, Jian-Sian Li, N. Al-Mamun, Aman Haque, Fan Ren, S. Pearton
{"title":"单晶氮化铝的干法和湿法蚀刻","authors":"Hsiao-Hsuan Wan, Chiao-Ching Chiang, Jian-Sian Li, N. Al-Mamun, Aman Haque, Fan Ren, S. Pearton","doi":"10.1116/6.0003744","DOIUrl":null,"url":null,"abstract":"The dry etching of high crystal quality c-plane AlN grown by metal organic chemical vapor deposition was examined as a function of source and chuck power in inductively coupled plasmas of Cl2/Ar or Cl2/Ar/CHF3. Maximum etch rates of ∼1500 Å min−1 were obtained at high powers, with selectivity over SiO2 up to 3. The as-etched surfaces in Cl2/Ar/CHF3 have F-related residues, which can be removed in NH4OH solutions. The Al-polar basal plane was found to etch slowly in either KOH or H3PO4 liquid formulations with extensive formation of hexagonal etch pits related to dislocations. The activation energies for KOH- or H3PO4-based wet etching rates within these pits were 124 and 183 kJ/mol, respectively, which are indicative of reaction-limited etching.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"116 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dry and wet etching of single-crystal AlN\",\"authors\":\"Hsiao-Hsuan Wan, Chiao-Ching Chiang, Jian-Sian Li, N. Al-Mamun, Aman Haque, Fan Ren, S. Pearton\",\"doi\":\"10.1116/6.0003744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dry etching of high crystal quality c-plane AlN grown by metal organic chemical vapor deposition was examined as a function of source and chuck power in inductively coupled plasmas of Cl2/Ar or Cl2/Ar/CHF3. Maximum etch rates of ∼1500 Å min−1 were obtained at high powers, with selectivity over SiO2 up to 3. The as-etched surfaces in Cl2/Ar/CHF3 have F-related residues, which can be removed in NH4OH solutions. The Al-polar basal plane was found to etch slowly in either KOH or H3PO4 liquid formulations with extensive formation of hexagonal etch pits related to dislocations. The activation energies for KOH- or H3PO4-based wet etching rates within these pits were 124 and 183 kJ/mol, respectively, which are indicative of reaction-limited etching.\",\"PeriodicalId\":170900,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"116 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 Cl2/Ar 或 Cl2/Ar/CHF3 的电感耦合等离子体中,研究了通过金属有机化学气相沉积生长的高晶体质量 c 平面 AlN 的干蚀刻与源和夹头功率的函数关系。在 Cl2/Ar/CHF3 中,蚀刻后的表面具有与 F 有关的残留物,这些残留物可在 NH4OH 溶液中去除。在 KOH 或 H3PO4 液体配方中,铝极性基底面的蚀刻速度都很慢,同时会形成大量与位错有关的六边形蚀刻坑。在这些凹坑中,KOH 或 H3PO4 基湿法蚀刻率的活化能分别为 124 和 183 kJ/mol,这表明蚀刻是受反应限制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dry and wet etching of single-crystal AlN
The dry etching of high crystal quality c-plane AlN grown by metal organic chemical vapor deposition was examined as a function of source and chuck power in inductively coupled plasmas of Cl2/Ar or Cl2/Ar/CHF3. Maximum etch rates of ∼1500 Å min−1 were obtained at high powers, with selectivity over SiO2 up to 3. The as-etched surfaces in Cl2/Ar/CHF3 have F-related residues, which can be removed in NH4OH solutions. The Al-polar basal plane was found to etch slowly in either KOH or H3PO4 liquid formulations with extensive formation of hexagonal etch pits related to dislocations. The activation energies for KOH- or H3PO4-based wet etching rates within these pits were 124 and 183 kJ/mol, respectively, which are indicative of reaction-limited etching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信