{"title":"利用变异模式分解的桥梁驱动损坏检测方法的介绍和应用","authors":"Shahrooz Khalkhali Shandiz, Hamed Khezrzadeh, Saeed Eftekhar Azam","doi":"10.3221/igf-esis.70.02","DOIUrl":null,"url":null,"abstract":"In this research, the variational mode decomposition (VMD) method is used for the drive-by health monitoring of bridges. Firstly, the problem of a half-trailer tractor moving over a bridge is formulated. Next, a Finite Element (FE) code is developed and verified against modal analysis results where complete agreement is found. The vehicle's output signals are decomposed through VMD and then analyzed to identify and precisely locate damage in the bridge structure. The range of applicability of this technique is examined from different perspectives by including various road classes, damage severity and location, and noise. The results prove the robustness and reliability of using VMD for drive-by damage detection. The method outcomes indicate that through the VMD method, cracks with a depth of 10% to 20% of the beam height can be detected even in the case of a rough road profile. A comparison of the results of the VMD and the well-known empirical mode decomposition (EMD) method has also been conducted. This comparison reveals that by implementing the VMD, precise damage locations can be determined, whereas the EMD fails to detect any damage under the conditions considered in this study. The effects of noise and moving vehicle speed are also investigated in the research, and it is found that processing the output signals using VMD can yield reliable estimates of the damage location(s).","PeriodicalId":507970,"journal":{"name":"Frattura ed Integrità Strutturale","volume":"70 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction and application of a drive-by damage detection methodology for bridges using variational mode decomposition\",\"authors\":\"Shahrooz Khalkhali Shandiz, Hamed Khezrzadeh, Saeed Eftekhar Azam\",\"doi\":\"10.3221/igf-esis.70.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the variational mode decomposition (VMD) method is used for the drive-by health monitoring of bridges. Firstly, the problem of a half-trailer tractor moving over a bridge is formulated. Next, a Finite Element (FE) code is developed and verified against modal analysis results where complete agreement is found. The vehicle's output signals are decomposed through VMD and then analyzed to identify and precisely locate damage in the bridge structure. The range of applicability of this technique is examined from different perspectives by including various road classes, damage severity and location, and noise. The results prove the robustness and reliability of using VMD for drive-by damage detection. The method outcomes indicate that through the VMD method, cracks with a depth of 10% to 20% of the beam height can be detected even in the case of a rough road profile. A comparison of the results of the VMD and the well-known empirical mode decomposition (EMD) method has also been conducted. This comparison reveals that by implementing the VMD, precise damage locations can be determined, whereas the EMD fails to detect any damage under the conditions considered in this study. The effects of noise and moving vehicle speed are also investigated in the research, and it is found that processing the output signals using VMD can yield reliable estimates of the damage location(s).\",\"PeriodicalId\":507970,\"journal\":{\"name\":\"Frattura ed Integrità Strutturale\",\"volume\":\"70 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frattura ed Integrità Strutturale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/igf-esis.70.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrità Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.70.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Introduction and application of a drive-by damage detection methodology for bridges using variational mode decomposition
In this research, the variational mode decomposition (VMD) method is used for the drive-by health monitoring of bridges. Firstly, the problem of a half-trailer tractor moving over a bridge is formulated. Next, a Finite Element (FE) code is developed and verified against modal analysis results where complete agreement is found. The vehicle's output signals are decomposed through VMD and then analyzed to identify and precisely locate damage in the bridge structure. The range of applicability of this technique is examined from different perspectives by including various road classes, damage severity and location, and noise. The results prove the robustness and reliability of using VMD for drive-by damage detection. The method outcomes indicate that through the VMD method, cracks with a depth of 10% to 20% of the beam height can be detected even in the case of a rough road profile. A comparison of the results of the VMD and the well-known empirical mode decomposition (EMD) method has also been conducted. This comparison reveals that by implementing the VMD, precise damage locations can be determined, whereas the EMD fails to detect any damage under the conditions considered in this study. The effects of noise and moving vehicle speed are also investigated in the research, and it is found that processing the output signals using VMD can yield reliable estimates of the damage location(s).