通过机器学习研究电容式去离子技术的重金属去除性能

Xiao-min Dian, Jiayuan Hao, Zheng-Ao Zhang, Zhe Chen, Lei Yao
{"title":"通过机器学习研究电容式去离子技术的重金属去除性能","authors":"Xiao-min Dian, Jiayuan Hao, Zheng-Ao Zhang, Zhe Chen, Lei Yao","doi":"10.1088/2631-8695/ad612c","DOIUrl":null,"url":null,"abstract":"\n Capacitive deionization (CDI) technology is utilized for efficient treatment of industrial wastewater, characterized by low energy consumption and environmental protection. In order to comprehend the correlation between key experimental parameters and the electrosorption capacity (EC) of heavy metals in CDI technology, this paper employs a genetic algorithm (GA) to optimize a backpropagation artificial neural network (BPANN) for predicting the EC of CDI technology for heavy metal ions, with the characteristics of electrode materials converted into numerical characteristics for further analysis. Compared to the BPANN, the optimized GABPANN model demonstrates superior predictive accuracy. It achieves automatic adjustment of the hidden layer structure, neuron count, and transfer functions. Furthermore, the grey relational analysis indicates that the electrode material and the initial pH value of the solution are pivotal in determining the EC of heavy metal ions. This underscores the efficacy of machine learning (ML) algorithms in forecasting the nonlinear dynamics of CDI systems and elucidates the influence of individual parameters on the efficacy of heavy metal removal.","PeriodicalId":505725,"journal":{"name":"Engineering Research Express","volume":"94 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy metal removal performance of capacitive deionization technology studied by machine learning\",\"authors\":\"Xiao-min Dian, Jiayuan Hao, Zheng-Ao Zhang, Zhe Chen, Lei Yao\",\"doi\":\"10.1088/2631-8695/ad612c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Capacitive deionization (CDI) technology is utilized for efficient treatment of industrial wastewater, characterized by low energy consumption and environmental protection. In order to comprehend the correlation between key experimental parameters and the electrosorption capacity (EC) of heavy metals in CDI technology, this paper employs a genetic algorithm (GA) to optimize a backpropagation artificial neural network (BPANN) for predicting the EC of CDI technology for heavy metal ions, with the characteristics of electrode materials converted into numerical characteristics for further analysis. Compared to the BPANN, the optimized GABPANN model demonstrates superior predictive accuracy. It achieves automatic adjustment of the hidden layer structure, neuron count, and transfer functions. Furthermore, the grey relational analysis indicates that the electrode material and the initial pH value of the solution are pivotal in determining the EC of heavy metal ions. This underscores the efficacy of machine learning (ML) algorithms in forecasting the nonlinear dynamics of CDI systems and elucidates the influence of individual parameters on the efficacy of heavy metal removal.\",\"PeriodicalId\":505725,\"journal\":{\"name\":\"Engineering Research Express\",\"volume\":\"94 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Research Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-8695/ad612c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad612c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电容式去离子(CDI)技术用于高效处理工业废水,具有能耗低和环保的特点。为了理解电容式去离子技术中关键实验参数与重金属电吸附容量(EC)之间的相关性,本文采用遗传算法(GA)优化了反向传播人工神经网络(BPANN),用于预测电容式去离子技术对重金属离子的电吸附容量,并将电极材料的特性转换为数值特性进行进一步分析。与 BPANN 相比,优化后的 GABPANN 模型具有更高的预测精度。它实现了对隐层结构、神经元数量和传递函数的自动调整。此外,灰色关系分析表明,电极材料和溶液的初始 pH 值是决定重金属离子导电率的关键。这凸显了机器学习(ML)算法在预测 CDI 系统非线性动态方面的功效,并阐明了各个参数对重金属去除效果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heavy metal removal performance of capacitive deionization technology studied by machine learning
Capacitive deionization (CDI) technology is utilized for efficient treatment of industrial wastewater, characterized by low energy consumption and environmental protection. In order to comprehend the correlation between key experimental parameters and the electrosorption capacity (EC) of heavy metals in CDI technology, this paper employs a genetic algorithm (GA) to optimize a backpropagation artificial neural network (BPANN) for predicting the EC of CDI technology for heavy metal ions, with the characteristics of electrode materials converted into numerical characteristics for further analysis. Compared to the BPANN, the optimized GABPANN model demonstrates superior predictive accuracy. It achieves automatic adjustment of the hidden layer structure, neuron count, and transfer functions. Furthermore, the grey relational analysis indicates that the electrode material and the initial pH value of the solution are pivotal in determining the EC of heavy metal ions. This underscores the efficacy of machine learning (ML) algorithms in forecasting the nonlinear dynamics of CDI systems and elucidates the influence of individual parameters on the efficacy of heavy metal removal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信