从订阅到收件箱:Facebook 和电子邮件新闻分享两极分化的比较研究

Hema Yoganarasimhan, Irina Iakovetskaia
{"title":"从订阅到收件箱:Facebook 和电子邮件新闻分享两极分化的比较研究","authors":"Hema Yoganarasimhan, Irina Iakovetskaia","doi":"10.2139/ssrn.4666856","DOIUrl":null,"url":null,"abstract":"This study explores the polarization of news content shared on Facebook compared with email using data from the New York Times’ Most Emailed and Most Shared lists over 2.5 years. Employing latent Dirichlet allocation and large language models (LLMs), we find that highly polarized articles are more likely to be shared on Facebook (versus email), even after accounting for factors like topics, emotion, and article age. Additionally, distinct topic preferences emerge, with social issues dominating Facebook shares and lifestyle topics prevalent in emails. Contrary to expectations, political polarization of articles shared on Facebook did not escalate post-2020 election. We introduce a novel approach to measuring polarization of text content that leverages generative artificial intelligence models, like ChatGPT, and it is both scalable and cost effective. This research contributes to the evolving intersection of LLMs, social media, and polarization studies, shedding light on descriptive patterns of content dissemination across different digital channels. This paper was accepted by Duncan Simester, marketing. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.04134 .","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"From Feeds to Inboxes: A Comparative Study of Polarization in Facebook and Email News Sharing\",\"authors\":\"Hema Yoganarasimhan, Irina Iakovetskaia\",\"doi\":\"10.2139/ssrn.4666856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the polarization of news content shared on Facebook compared with email using data from the New York Times’ Most Emailed and Most Shared lists over 2.5 years. Employing latent Dirichlet allocation and large language models (LLMs), we find that highly polarized articles are more likely to be shared on Facebook (versus email), even after accounting for factors like topics, emotion, and article age. Additionally, distinct topic preferences emerge, with social issues dominating Facebook shares and lifestyle topics prevalent in emails. Contrary to expectations, political polarization of articles shared on Facebook did not escalate post-2020 election. We introduce a novel approach to measuring polarization of text content that leverages generative artificial intelligence models, like ChatGPT, and it is both scalable and cost effective. This research contributes to the evolving intersection of LLMs, social media, and polarization studies, shedding light on descriptive patterns of content dissemination across different digital channels. This paper was accepted by Duncan Simester, marketing. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.04134 .\",\"PeriodicalId\":21855,\"journal\":{\"name\":\"SSRN Electronic Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SSRN Electronic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4666856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSRN Electronic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4666856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究利用《纽约时报》2.5 年来的 "最常发送邮件列表 "和 "最常分享列表 "中的数据,探讨了与电子邮件相比,在 Facebook 上分享的新闻内容的两极分化问题。通过使用潜狄利克特分配和大语言模型(LLMs),我们发现,即使考虑了主题、情感和文章年龄等因素,两极分化严重的文章也更有可能在 Facebook(相对于电子邮件)上被分享。此外,还出现了不同的话题偏好,社会问题在 Facebook 上的分享占主导地位,而生活方式话题则在电子邮件中占主导地位。与预期相反,2020 年大选之后,在 Facebook 上分享的文章的政治极化程度并没有升级。我们介绍了一种测量文本内容两极分化的新方法,该方法利用生成式人工智能模型(如 ChatGPT),具有可扩展性和成本效益。这项研究有助于LLM、社交媒体和极化研究之间不断发展的交叉领域,揭示不同数字渠道内容传播的描述性模式。本文由 Duncan Simester(市场营销)接受。补充材料:在线附录和数据文件可在 https://doi.org/10.1287/mnsc.2023.04134 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Feeds to Inboxes: A Comparative Study of Polarization in Facebook and Email News Sharing
This study explores the polarization of news content shared on Facebook compared with email using data from the New York Times’ Most Emailed and Most Shared lists over 2.5 years. Employing latent Dirichlet allocation and large language models (LLMs), we find that highly polarized articles are more likely to be shared on Facebook (versus email), even after accounting for factors like topics, emotion, and article age. Additionally, distinct topic preferences emerge, with social issues dominating Facebook shares and lifestyle topics prevalent in emails. Contrary to expectations, political polarization of articles shared on Facebook did not escalate post-2020 election. We introduce a novel approach to measuring polarization of text content that leverages generative artificial intelligence models, like ChatGPT, and it is both scalable and cost effective. This research contributes to the evolving intersection of LLMs, social media, and polarization studies, shedding light on descriptive patterns of content dissemination across different digital channels. This paper was accepted by Duncan Simester, marketing. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.04134 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信