{"title":"通过定向能沉积增材制造技术实现 Ti6Al4V 和 Ti6Al4V-B4C 的多材料结构","authors":"Nathaniel W. Zuckschwerdt, Amit Bandyopadhyay","doi":"10.36922/msam.3571","DOIUrl":null,"url":null,"abstract":"The demand for advanced materials has driven innovation in titanium alloy design, particularly in the aerospace, automotive, and biomedical sectors. Additive manufacturing (AM) enables the construction of multi-material structures, offering potential improvements in mechanical properties such as wear resistance and high-temperature capabilities, thus extending the service life of components such as Ti6Al4V. Directed energy deposition (DED)-based metal AM was used to manufacture radial multi-material structures with a Ti6Al4V (Ti64) core and a Ti6Al4V-5 wt.% B4C composite outer layer. X-ray diffraction analysis and microstructural observation suggest that distinct B4C particles are strongly attached to the Ti6Al4V matrix. The addition of B4C increased the average hardness from 313 HV for Ti6Al4V to 538 HV for the composites. The addition of 5 wt.% B4C in Ti6Al4V increased the average compressive yield strength (YS) to 1440 MPa from 972 MPa for the control Ti6Al4V, i.e., >48% increase without any significant change in the elastic modulus. The radial multi-material structures did not exhibit any changes in the compressive modulus compared to Ti6Al4V but displayed an increase in the average compressive YS to 1422 MPa, i.e., >45% higher compared to Ti6Al4V. Microstructural characterization revealed a smooth transition from the pure Ti6Al4V at the core to the Ti64-B4C composite outer layer. No interfacial failure was observed during compressive deformation, indicating a strong metallurgical bonding during multi-material radial composite processing. Our results demonstrated that a significant improvement in mechanical properties can be achieved in one AM build operation through designing innovative multi-material structures using DED-based AM.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"46 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-material structures of Ti6Al4V and Ti6Al4V-B4C through directed energy deposition-based additive manufacturing\",\"authors\":\"Nathaniel W. Zuckschwerdt, Amit Bandyopadhyay\",\"doi\":\"10.36922/msam.3571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for advanced materials has driven innovation in titanium alloy design, particularly in the aerospace, automotive, and biomedical sectors. Additive manufacturing (AM) enables the construction of multi-material structures, offering potential improvements in mechanical properties such as wear resistance and high-temperature capabilities, thus extending the service life of components such as Ti6Al4V. Directed energy deposition (DED)-based metal AM was used to manufacture radial multi-material structures with a Ti6Al4V (Ti64) core and a Ti6Al4V-5 wt.% B4C composite outer layer. X-ray diffraction analysis and microstructural observation suggest that distinct B4C particles are strongly attached to the Ti6Al4V matrix. The addition of B4C increased the average hardness from 313 HV for Ti6Al4V to 538 HV for the composites. The addition of 5 wt.% B4C in Ti6Al4V increased the average compressive yield strength (YS) to 1440 MPa from 972 MPa for the control Ti6Al4V, i.e., >48% increase without any significant change in the elastic modulus. The radial multi-material structures did not exhibit any changes in the compressive modulus compared to Ti6Al4V but displayed an increase in the average compressive YS to 1422 MPa, i.e., >45% higher compared to Ti6Al4V. Microstructural characterization revealed a smooth transition from the pure Ti6Al4V at the core to the Ti64-B4C composite outer layer. No interfacial failure was observed during compressive deformation, indicating a strong metallurgical bonding during multi-material radial composite processing. Our results demonstrated that a significant improvement in mechanical properties can be achieved in one AM build operation through designing innovative multi-material structures using DED-based AM.\",\"PeriodicalId\":422581,\"journal\":{\"name\":\"Materials Science in Additive Manufacturing\",\"volume\":\"46 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36922/msam.3571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/msam.3571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-material structures of Ti6Al4V and Ti6Al4V-B4C through directed energy deposition-based additive manufacturing
The demand for advanced materials has driven innovation in titanium alloy design, particularly in the aerospace, automotive, and biomedical sectors. Additive manufacturing (AM) enables the construction of multi-material structures, offering potential improvements in mechanical properties such as wear resistance and high-temperature capabilities, thus extending the service life of components such as Ti6Al4V. Directed energy deposition (DED)-based metal AM was used to manufacture radial multi-material structures with a Ti6Al4V (Ti64) core and a Ti6Al4V-5 wt.% B4C composite outer layer. X-ray diffraction analysis and microstructural observation suggest that distinct B4C particles are strongly attached to the Ti6Al4V matrix. The addition of B4C increased the average hardness from 313 HV for Ti6Al4V to 538 HV for the composites. The addition of 5 wt.% B4C in Ti6Al4V increased the average compressive yield strength (YS) to 1440 MPa from 972 MPa for the control Ti6Al4V, i.e., >48% increase without any significant change in the elastic modulus. The radial multi-material structures did not exhibit any changes in the compressive modulus compared to Ti6Al4V but displayed an increase in the average compressive YS to 1422 MPa, i.e., >45% higher compared to Ti6Al4V. Microstructural characterization revealed a smooth transition from the pure Ti6Al4V at the core to the Ti64-B4C composite outer layer. No interfacial failure was observed during compressive deformation, indicating a strong metallurgical bonding during multi-material radial composite processing. Our results demonstrated that a significant improvement in mechanical properties can be achieved in one AM build operation through designing innovative multi-material structures using DED-based AM.