关于 $q$-Ces\`{a}ro 有界双序列空间

Sezer Erdem
{"title":"关于 $q$-Ces\\`{a}ro 有界双序列空间","authors":"Sezer Erdem","doi":"10.36753/mathenot.1492238","DOIUrl":null,"url":null,"abstract":"In this article, the new sequence space $\\tilde{\\mathcal{M}}_u^q$ is acquainted, described as the domain of the 4d (4-dimensional) $q$-Ces\\`{a}ro matrix operator, which is the $q$-analogue of the first order 4d Ces\\`{a}ro matrix operator, on the space of bounded sequences. In the continuation of the study, the completeness of the new space is given, its fundamental set is found, and the inclusion relation related to the space is presented. In the last two parts, the duals of the space are determined and some matrix classes are acquired.","PeriodicalId":489457,"journal":{"name":"Mathematical sciences and applications e-notes","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the $q$-Ces\\\\`{a}ro bounded double sequence space\",\"authors\":\"Sezer Erdem\",\"doi\":\"10.36753/mathenot.1492238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the new sequence space $\\\\tilde{\\\\mathcal{M}}_u^q$ is acquainted, described as the domain of the 4d (4-dimensional) $q$-Ces\\\\`{a}ro matrix operator, which is the $q$-analogue of the first order 4d Ces\\\\`{a}ro matrix operator, on the space of bounded sequences. In the continuation of the study, the completeness of the new space is given, its fundamental set is found, and the inclusion relation related to the space is presented. In the last two parts, the duals of the space are determined and some matrix classes are acquired.\",\"PeriodicalId\":489457,\"journal\":{\"name\":\"Mathematical sciences and applications e-notes\",\"volume\":\"1 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical sciences and applications e-notes\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.36753/mathenot.1492238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical sciences and applications e-notes","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.36753/mathenot.1492238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文认识了新的序列空间 $tilde{\mathcal{M}}_u^q$,将其描述为有界序列空间上的 4d(4 维)$q$-Ces\`{a}ro 矩阵算子的域,它是一阶 4d Ces\`{a}ro 矩阵算子的 $q$-analogue 。在继续研究中,给出了新空间的完备性,找到了它的基集,并提出了与空间相关的包含关系。在最后两部分中,确定了空间的对偶,并获得了一些矩阵类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the $q$-Ces\`{a}ro bounded double sequence space
In this article, the new sequence space $\tilde{\mathcal{M}}_u^q$ is acquainted, described as the domain of the 4d (4-dimensional) $q$-Ces\`{a}ro matrix operator, which is the $q$-analogue of the first order 4d Ces\`{a}ro matrix operator, on the space of bounded sequences. In the continuation of the study, the completeness of the new space is given, its fundamental set is found, and the inclusion relation related to the space is presented. In the last two parts, the duals of the space are determined and some matrix classes are acquired.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信