关于某些类算子的 S-韦尔定理和性质 (t)

IF 0.6 Q3 MATHEMATICS
Pietro Aiena, Fabio Burderi, Salvatore Triolo
{"title":"关于某些类算子的 S-韦尔定理和性质 (t)","authors":"Pietro Aiena,&nbsp;Fabio Burderi,&nbsp;Salvatore Triolo","doi":"10.1007/s44146-024-00147-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider two new variants of the classical Weyl ’s theorem for operators defined on Banach spaces. These variants called <i>S</i>-Weyl’s theorem and property (<i>t</i>) are stronger than the more classical variants of Weyl’s theorem, as <i>a</i>-Weyl’s theorem and property <span>\\((\\omega )\\)</span> studied by several authors. In particular, we explore these two new variants for operators that commute with an injective quasi-nilpotent operators.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"295 - 312"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On S-Weyl’s theorem and property (t) for some classes of operators\",\"authors\":\"Pietro Aiena,&nbsp;Fabio Burderi,&nbsp;Salvatore Triolo\",\"doi\":\"10.1007/s44146-024-00147-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider two new variants of the classical Weyl ’s theorem for operators defined on Banach spaces. These variants called <i>S</i>-Weyl’s theorem and property (<i>t</i>) are stronger than the more classical variants of Weyl’s theorem, as <i>a</i>-Weyl’s theorem and property <span>\\\\((\\\\omega )\\\\)</span> studied by several authors. In particular, we explore these two new variants for operators that commute with an injective quasi-nilpotent operators.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"295 - 312\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-024-00147-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00147-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了Banach空间上定义算子的经典Weyl定理的两个新变体。这些被称为S-Weyl定理和性质(t)的变体比Weyl定理的更经典的变体更强大,正如几位作者研究的a-Weyl定理和性质\((\omega )\)。特别地,我们探索了与内射拟幂零算子交换的算子的这两个新变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On S-Weyl’s theorem and property (t) for some classes of operators

In this paper we consider two new variants of the classical Weyl ’s theorem for operators defined on Banach spaces. These variants called S-Weyl’s theorem and property (t) are stronger than the more classical variants of Weyl’s theorem, as a-Weyl’s theorem and property \((\omega )\) studied by several authors. In particular, we explore these two new variants for operators that commute with an injective quasi-nilpotent operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信