{"title":"在基于滤波器阵列的芯片级光谱仪中使用神经网络重建光谱","authors":"J. Wissing, Lidia Fargueta, Stephan Scheele","doi":"10.1515/teme-2024-0063","DOIUrl":null,"url":null,"abstract":"\n Spectral reconstruction in filter-based miniature spectrometers remains challenging due to the ill-posed nature of identifying stable solutions. Even minor deviations in sensor data can cause misleading reconstruction outcomes, particularly in the absence of proper regularization techniques. While previous research has attempted to mitigate this instability by incorporating neural networks into the reconstruction pipeline to denoise the data before reconstruction or correct it after reconstruction, these approaches have not fully resolved the underlying issue. This work functions as a proof-of-concept for data-driven reconstruction that relies exclusively on neural networks, thereby circumventing the need to address the ill-posed inverse problem. We curate a dataset holding transmission spectra from various colored foils, commonly used in theatrical, and train five distinct neural networks optimized for spectral reconstruction. Subsequently, we benchmark these networks against each other and compare their reconstruction capabilities with a linear reconstruction model to show the applicability of cognitive sensors to the problem of spectral reconstruction. In our testing, we discovered that (i) spectral reconstruction can be achieved using neural networks with an end-to-end approach, and (ii) while a classic linear model can perform equal to neural networks under optimal conditions, the latter can be considered more robust against data deviations.","PeriodicalId":509687,"journal":{"name":"tm - Technisches Messen","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral reconstruction using neural networks in filter-array-based chip-size spectrometers\",\"authors\":\"J. Wissing, Lidia Fargueta, Stephan Scheele\",\"doi\":\"10.1515/teme-2024-0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Spectral reconstruction in filter-based miniature spectrometers remains challenging due to the ill-posed nature of identifying stable solutions. Even minor deviations in sensor data can cause misleading reconstruction outcomes, particularly in the absence of proper regularization techniques. While previous research has attempted to mitigate this instability by incorporating neural networks into the reconstruction pipeline to denoise the data before reconstruction or correct it after reconstruction, these approaches have not fully resolved the underlying issue. This work functions as a proof-of-concept for data-driven reconstruction that relies exclusively on neural networks, thereby circumventing the need to address the ill-posed inverse problem. We curate a dataset holding transmission spectra from various colored foils, commonly used in theatrical, and train five distinct neural networks optimized for spectral reconstruction. Subsequently, we benchmark these networks against each other and compare their reconstruction capabilities with a linear reconstruction model to show the applicability of cognitive sensors to the problem of spectral reconstruction. In our testing, we discovered that (i) spectral reconstruction can be achieved using neural networks with an end-to-end approach, and (ii) while a classic linear model can perform equal to neural networks under optimal conditions, the latter can be considered more robust against data deviations.\",\"PeriodicalId\":509687,\"journal\":{\"name\":\"tm - Technisches Messen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"tm - Technisches Messen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/teme-2024-0063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"tm - Technisches Messen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/teme-2024-0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral reconstruction using neural networks in filter-array-based chip-size spectrometers
Spectral reconstruction in filter-based miniature spectrometers remains challenging due to the ill-posed nature of identifying stable solutions. Even minor deviations in sensor data can cause misleading reconstruction outcomes, particularly in the absence of proper regularization techniques. While previous research has attempted to mitigate this instability by incorporating neural networks into the reconstruction pipeline to denoise the data before reconstruction or correct it after reconstruction, these approaches have not fully resolved the underlying issue. This work functions as a proof-of-concept for data-driven reconstruction that relies exclusively on neural networks, thereby circumventing the need to address the ill-posed inverse problem. We curate a dataset holding transmission spectra from various colored foils, commonly used in theatrical, and train five distinct neural networks optimized for spectral reconstruction. Subsequently, we benchmark these networks against each other and compare their reconstruction capabilities with a linear reconstruction model to show the applicability of cognitive sensors to the problem of spectral reconstruction. In our testing, we discovered that (i) spectral reconstruction can be achieved using neural networks with an end-to-end approach, and (ii) while a classic linear model can perform equal to neural networks under optimal conditions, the latter can be considered more robust against data deviations.