巴格曼空间中的三维谐振子和实体谐波

D. Sunko, J. Cioslowski
{"title":"巴格曼空间中的三维谐振子和实体谐波","authors":"D. Sunko, J. Cioslowski","doi":"10.1088/1361-6404/ad61d1","DOIUrl":null,"url":null,"abstract":"\n The three-dimensional harmonic oscillator is solved in Bargmann space. The treatment is pedagogically more transparent than the standard ones, at the price of introducing the Bargmann transform in the context of the one-dimensional oscillator. The standard solid harmonics are similarly derived with minimal technical effort, amounting to a complete self-contained exposition suitable for introductory courses in quantum mechanics or mathematical methods of physics. It provides an early exposure to wavelets, with important contemporary applications in signal analysis and quantum optics.","PeriodicalId":505733,"journal":{"name":"European Journal of Physics","volume":"35 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The three-dimensional harmonic oscillator and solid harmonics in Bargmann space\",\"authors\":\"D. Sunko, J. Cioslowski\",\"doi\":\"10.1088/1361-6404/ad61d1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The three-dimensional harmonic oscillator is solved in Bargmann space. The treatment is pedagogically more transparent than the standard ones, at the price of introducing the Bargmann transform in the context of the one-dimensional oscillator. The standard solid harmonics are similarly derived with minimal technical effort, amounting to a complete self-contained exposition suitable for introductory courses in quantum mechanics or mathematical methods of physics. It provides an early exposure to wavelets, with important contemporary applications in signal analysis and quantum optics.\",\"PeriodicalId\":505733,\"journal\":{\"name\":\"European Journal of Physics\",\"volume\":\"35 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6404/ad61d1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6404/ad61d1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维谐波振荡器在巴格曼空间中求解。这种处理方法在教学上比标准处理方法更加透明,但代价是要在一维振荡器的背景下介绍巴格曼变换。标准固态谐波的推导同样只需极少的技术难度,相当于一个完整的自足式论述,适合量子力学或物理学数学方法的入门课程。它提供了一个早期接触小波的机会,在信号分析和量子光学中有着重要的当代应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The three-dimensional harmonic oscillator and solid harmonics in Bargmann space
The three-dimensional harmonic oscillator is solved in Bargmann space. The treatment is pedagogically more transparent than the standard ones, at the price of introducing the Bargmann transform in the context of the one-dimensional oscillator. The standard solid harmonics are similarly derived with minimal technical effort, amounting to a complete self-contained exposition suitable for introductory courses in quantum mechanics or mathematical methods of physics. It provides an early exposure to wavelets, with important contemporary applications in signal analysis and quantum optics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信