利用机器学习技术预测犯罪热点

R. Nivetha, Dr. C. Meenakshi
{"title":"利用机器学习技术预测犯罪热点","authors":"R. Nivetha, Dr. C. Meenakshi","doi":"10.48175/ijetir-1229","DOIUrl":null,"url":null,"abstract":"This research delves into the application of machine learning algorithms for forecasting crime hotspots by leveraging historical data of public property crime in a major coastal city in southeast China. The study conducts a comparative analysis, emphasizing the predictive efficacy of various machine learning models. Results indicate that the LSTM model surpasses other methods including KNN, random forest, support vector machine, naive Bayes, and convolutional neural networks when utilizing solely historical crime data. Moreover, integrating built environment data such as points of interest (POIs) and urban road network density as covariates into the LSTM model enhances predictive accuracy. These findings bear significance for shaping policing strategies and implementing measures for crime prevention and control.","PeriodicalId":341984,"journal":{"name":"International Journal of Advanced Research in Science, Communication and Technology","volume":"8 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Crime Hotspots using Machine Learning Techniques\",\"authors\":\"R. Nivetha, Dr. C. Meenakshi\",\"doi\":\"10.48175/ijetir-1229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research delves into the application of machine learning algorithms for forecasting crime hotspots by leveraging historical data of public property crime in a major coastal city in southeast China. The study conducts a comparative analysis, emphasizing the predictive efficacy of various machine learning models. Results indicate that the LSTM model surpasses other methods including KNN, random forest, support vector machine, naive Bayes, and convolutional neural networks when utilizing solely historical crime data. Moreover, integrating built environment data such as points of interest (POIs) and urban road network density as covariates into the LSTM model enhances predictive accuracy. These findings bear significance for shaping policing strategies and implementing measures for crime prevention and control.\",\"PeriodicalId\":341984,\"journal\":{\"name\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48175/ijetir-1229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Science, Communication and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48175/ijetir-1229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用中国东南沿海某大城市的公共财产犯罪历史数据,深入探讨了机器学习算法在犯罪热点预测中的应用。研究进行了比较分析,强调了各种机器学习模型的预测功效。结果表明,当仅利用历史犯罪数据时,LSTM 模型超越了其他方法,包括 KNN、随机森林、支持向量机、天真贝叶斯和卷积神经网络。此外,将兴趣点(POIs)和城市路网密度等建筑环境数据作为协变量整合到 LSTM 模型中还能提高预测准确性。这些发现对制定警务战略和实施犯罪预防与控制措施具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Crime Hotspots using Machine Learning Techniques
This research delves into the application of machine learning algorithms for forecasting crime hotspots by leveraging historical data of public property crime in a major coastal city in southeast China. The study conducts a comparative analysis, emphasizing the predictive efficacy of various machine learning models. Results indicate that the LSTM model surpasses other methods including KNN, random forest, support vector machine, naive Bayes, and convolutional neural networks when utilizing solely historical crime data. Moreover, integrating built environment data such as points of interest (POIs) and urban road network density as covariates into the LSTM model enhances predictive accuracy. These findings bear significance for shaping policing strategies and implementing measures for crime prevention and control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信