电化学石化和脱石化诱导的 FeSi2/Si 纳米复合材料中的间接磁离子效应

Matthias Prasch, Roland Wuerschum, S. Topolovec
{"title":"电化学石化和脱石化诱导的 FeSi2/Si 纳米复合材料中的间接磁离子效应","authors":"Matthias Prasch, Roland Wuerschum, S. Topolovec","doi":"10.1088/2515-7639/ad618e","DOIUrl":null,"url":null,"abstract":"\n A nanocomposite consisting of iron disilicide nanocrystals embedded in a Si matrix was prepared from industry-grade ferrosilicon by ball milling and subsequent heat treatment. By tailoring the heat treatment temperature either the metallic α-FeSi2 or the semiconducting β-FeSi2 phase could be made the dominant one, as indicated by X-ray diffraction. Magnetization curve and zero-field cooled/field cooled measurements revealed that ferromagnetic and superparamagnetic centers are present in the nanocomposites, which could be attributed to Fe-rich defective regions at the surface of the iron disilicide nanocrystals. For both nanocomposites, containing either mainly the α or β phase, we could show that the magnetization can be varied by about 40% by electrochemical lithiation and delithiation of the surrounding Si matrix, with up to 6.5% of the magnetization change beingreversible. These variations could be attributed to the formation of additional Fe-rich magnetic regions, induced by a local change of the Fe/Si fraction at the FeSi2/Si interfaces, and their subsequent partial elimination. Thus, this work demonstrates a new concept for how an \"indirect magneto-ionic effect'' can be obtained in composite materials consisting of a phase prone to the electrochemical ion uptake (i.e., the Si matrix) and a magnetic phase (i.e., the FeSi2 nanocrystals).","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"9 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indirect magneto-ionic effect in FeSi2/Si nanocomposite induced by electrochemical lithiation and delithiation\",\"authors\":\"Matthias Prasch, Roland Wuerschum, S. Topolovec\",\"doi\":\"10.1088/2515-7639/ad618e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A nanocomposite consisting of iron disilicide nanocrystals embedded in a Si matrix was prepared from industry-grade ferrosilicon by ball milling and subsequent heat treatment. By tailoring the heat treatment temperature either the metallic α-FeSi2 or the semiconducting β-FeSi2 phase could be made the dominant one, as indicated by X-ray diffraction. Magnetization curve and zero-field cooled/field cooled measurements revealed that ferromagnetic and superparamagnetic centers are present in the nanocomposites, which could be attributed to Fe-rich defective regions at the surface of the iron disilicide nanocrystals. For both nanocomposites, containing either mainly the α or β phase, we could show that the magnetization can be varied by about 40% by electrochemical lithiation and delithiation of the surrounding Si matrix, with up to 6.5% of the magnetization change beingreversible. These variations could be attributed to the formation of additional Fe-rich magnetic regions, induced by a local change of the Fe/Si fraction at the FeSi2/Si interfaces, and their subsequent partial elimination. Thus, this work demonstrates a new concept for how an \\\"indirect magneto-ionic effect'' can be obtained in composite materials consisting of a phase prone to the electrochemical ion uptake (i.e., the Si matrix) and a magnetic phase (i.e., the FeSi2 nanocrystals).\",\"PeriodicalId\":501825,\"journal\":{\"name\":\"Journal of Physics: Materials\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/ad618e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7639/ad618e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过球磨和随后的热处理,利用工业级硅铁制备出了由嵌入硅基体的二硅化铁纳米晶体组成的纳米复合材料。通过调整热处理温度,金属α-FeSi2或半导体β-FeSi2相均可成为主要相,X射线衍射表明了这一点。磁化曲线和零场冷却/场冷却测量结果表明,纳米复合材料中存在铁磁性和超顺磁性中心,这可能归因于二硅化铁纳米晶体表面富含铁的缺陷区。对于这两种主要含有 α 相或 β 相的纳米复合材料,我们可以证明,通过周围硅基体的电化学石化和脱硅,磁化率可变化约 40%,其中高达 6.5% 的磁化率变化是可逆的。这些变化可归因于在 FeSi2/Si 界面的铁/硅组分局部变化诱导下形成的额外富铁磁性区域,以及它们随后的部分消除。因此,这项工作展示了一个新概念,即如何在由易电化学离子吸收相(即硅基体)和磁性相(即 FeSi2 纳米晶体)组成的复合材料中获得 "间接磁离子效应"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indirect magneto-ionic effect in FeSi2/Si nanocomposite induced by electrochemical lithiation and delithiation
A nanocomposite consisting of iron disilicide nanocrystals embedded in a Si matrix was prepared from industry-grade ferrosilicon by ball milling and subsequent heat treatment. By tailoring the heat treatment temperature either the metallic α-FeSi2 or the semiconducting β-FeSi2 phase could be made the dominant one, as indicated by X-ray diffraction. Magnetization curve and zero-field cooled/field cooled measurements revealed that ferromagnetic and superparamagnetic centers are present in the nanocomposites, which could be attributed to Fe-rich defective regions at the surface of the iron disilicide nanocrystals. For both nanocomposites, containing either mainly the α or β phase, we could show that the magnetization can be varied by about 40% by electrochemical lithiation and delithiation of the surrounding Si matrix, with up to 6.5% of the magnetization change beingreversible. These variations could be attributed to the formation of additional Fe-rich magnetic regions, induced by a local change of the Fe/Si fraction at the FeSi2/Si interfaces, and their subsequent partial elimination. Thus, this work demonstrates a new concept for how an "indirect magneto-ionic effect'' can be obtained in composite materials consisting of a phase prone to the electrochemical ion uptake (i.e., the Si matrix) and a magnetic phase (i.e., the FeSi2 nanocrystals).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信