{"title":"分布式系统中数据暴露最小化的机器学习增强型概率验证技术","authors":"P. Udhayakumar, A.Poongodi","doi":"10.48175/ijetir-1236","DOIUrl":null,"url":null,"abstract":"This article studies the distributed state estimation issue for complex networks with nonlinear uncertainty. The extended state approach is used to deal with the nonlinear uncertainty. The distributed state predictor is designed based on the extended state system model, and the distributed state estimator is designed by using the measurement of the corresponding node. The prediction error and the estimation error are derived. The prediction error covariance (PEC) is obtained in terms of the recursive Riccati equation, and the upper bound of the PEC is minimized by designing an optimal estimator gain. With the vectorization approach, a sufficient condition concerning stability of the upper bound is developed. Finally, a numerical example is presented to illustrate the effectiveness of the designed extended state estimator.","PeriodicalId":341984,"journal":{"name":"International Journal of Advanced Research in Science, Communication and Technology","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Enhanced Probabilistic Validation Techniques with Minimal Data Exposure in Distributed Systems\",\"authors\":\"P. Udhayakumar, A.Poongodi\",\"doi\":\"10.48175/ijetir-1236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies the distributed state estimation issue for complex networks with nonlinear uncertainty. The extended state approach is used to deal with the nonlinear uncertainty. The distributed state predictor is designed based on the extended state system model, and the distributed state estimator is designed by using the measurement of the corresponding node. The prediction error and the estimation error are derived. The prediction error covariance (PEC) is obtained in terms of the recursive Riccati equation, and the upper bound of the PEC is minimized by designing an optimal estimator gain. With the vectorization approach, a sufficient condition concerning stability of the upper bound is developed. Finally, a numerical example is presented to illustrate the effectiveness of the designed extended state estimator.\",\"PeriodicalId\":341984,\"journal\":{\"name\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48175/ijetir-1236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Science, Communication and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48175/ijetir-1236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning-Enhanced Probabilistic Validation Techniques with Minimal Data Exposure in Distributed Systems
This article studies the distributed state estimation issue for complex networks with nonlinear uncertainty. The extended state approach is used to deal with the nonlinear uncertainty. The distributed state predictor is designed based on the extended state system model, and the distributed state estimator is designed by using the measurement of the corresponding node. The prediction error and the estimation error are derived. The prediction error covariance (PEC) is obtained in terms of the recursive Riccati equation, and the upper bound of the PEC is minimized by designing an optimal estimator gain. With the vectorization approach, a sufficient condition concerning stability of the upper bound is developed. Finally, a numerical example is presented to illustrate the effectiveness of the designed extended state estimator.