{"title":"GR-Former:基于骨架的驾驶员动作识别图形强化变换器","authors":"Zhuoyan Xu, Jingke Xu","doi":"10.1049/cvi2.12298","DOIUrl":null,"url":null,"abstract":"<p>In in-vehicle driving scenarios, composite action recognition is crucial for improving safety and understanding the driver's intention. Due to spatial constraints and occlusion factors, the driver's range of motion is limited, thus resulting in similar action patterns that are difficult to differentiate. Additionally, collecting skeleton data that characterise the full human posture is difficult, posing additional challenges for action recognition. To address the problems, a novel Graph-Reinforcement Transformer (GR-Former) model is proposed. Using limited skeleton data as inputs, by introducing graph structure information to directionally reinforce the effect of the self-attention mechanism, dynamically learning and aggregating features between joints at multiple levels, the authors’ model constructs a richer feature vector space, enhancing its expressiveness and recognition accuracy. Based on the Drive & Act dataset for composite action recognition, the authors’ work only applies human upper-body skeleton data to achieve state-of-the-art performance compared to existing methods. Using complete human skeleton data also has excellent recognition accuracy on the NTU RGB + D- and NTU RGB + D 120 dataset, demonstrating the great generalisability of the GR-Former. Generally, the authors’ work provides a new and effective solution for driver action recognition in in-vehicle scenarios.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"982-991"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12298","citationCount":"0","resultStr":"{\"title\":\"GR-Former: Graph-reinforcement transformer for skeleton-based driver action recognition\",\"authors\":\"Zhuoyan Xu, Jingke Xu\",\"doi\":\"10.1049/cvi2.12298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In in-vehicle driving scenarios, composite action recognition is crucial for improving safety and understanding the driver's intention. Due to spatial constraints and occlusion factors, the driver's range of motion is limited, thus resulting in similar action patterns that are difficult to differentiate. Additionally, collecting skeleton data that characterise the full human posture is difficult, posing additional challenges for action recognition. To address the problems, a novel Graph-Reinforcement Transformer (GR-Former) model is proposed. Using limited skeleton data as inputs, by introducing graph structure information to directionally reinforce the effect of the self-attention mechanism, dynamically learning and aggregating features between joints at multiple levels, the authors’ model constructs a richer feature vector space, enhancing its expressiveness and recognition accuracy. Based on the Drive & Act dataset for composite action recognition, the authors’ work only applies human upper-body skeleton data to achieve state-of-the-art performance compared to existing methods. Using complete human skeleton data also has excellent recognition accuracy on the NTU RGB + D- and NTU RGB + D 120 dataset, demonstrating the great generalisability of the GR-Former. Generally, the authors’ work provides a new and effective solution for driver action recognition in in-vehicle scenarios.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 7\",\"pages\":\"982-991\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12298\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12298\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12298","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
GR-Former: Graph-reinforcement transformer for skeleton-based driver action recognition
In in-vehicle driving scenarios, composite action recognition is crucial for improving safety and understanding the driver's intention. Due to spatial constraints and occlusion factors, the driver's range of motion is limited, thus resulting in similar action patterns that are difficult to differentiate. Additionally, collecting skeleton data that characterise the full human posture is difficult, posing additional challenges for action recognition. To address the problems, a novel Graph-Reinforcement Transformer (GR-Former) model is proposed. Using limited skeleton data as inputs, by introducing graph structure information to directionally reinforce the effect of the self-attention mechanism, dynamically learning and aggregating features between joints at multiple levels, the authors’ model constructs a richer feature vector space, enhancing its expressiveness and recognition accuracy. Based on the Drive & Act dataset for composite action recognition, the authors’ work only applies human upper-body skeleton data to achieve state-of-the-art performance compared to existing methods. Using complete human skeleton data also has excellent recognition accuracy on the NTU RGB + D- and NTU RGB + D 120 dataset, demonstrating the great generalisability of the GR-Former. Generally, the authors’ work provides a new and effective solution for driver action recognition in in-vehicle scenarios.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf