{"title":"农村医疗物流中先进航空流动性的空间分析","authors":"R. Bridgelall","doi":"10.3390/info15070397","DOIUrl":null,"url":null,"abstract":"The transportation of patients in emergency medical situations, particularly in rural areas, often faces significant challenges due to long travel distances and limited access to healthcare facilities. These challenges can result in critical delays in medical care, adversely affecting patient outcomes. Addressing this issue is essential for improving survival rates and health outcomes in underserved regions. This study explored the potential of advanced air mobility to enhance emergency medical services by reducing patient transport times through the strategic placement of vertiports. Using North Dakota as a case study, the research developed a GIS-based optimization workflow to identify optimal vertiport locations that maximize time savings. The study highlighted the benefits of strategic vertiport placement at existing airports and hospital heliports to minimize community disruption and leverage underutilized infrastructure. A key finding was that the optimized mixed-mode routes could reduce patient transport times by up to 21.8 min compared with drive-only routes, significantly impacting emergency response efficiency. Additionally, the study revealed that more than 45% of the populated areas experienced reduced ground travel times due to the integration of vertiports, highlighting the strategic importance of vertiport placement in optimizing emergency medical services. The research also demonstrated the replicability of the GIS-based optimization model for other regions, offering valuable insights for policymakers and stakeholders in enhancing EMS through advanced air mobility solutions.","PeriodicalId":510156,"journal":{"name":"Information","volume":"23 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Analysis of Advanced Air Mobility in Rural Healthcare Logistics\",\"authors\":\"R. Bridgelall\",\"doi\":\"10.3390/info15070397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transportation of patients in emergency medical situations, particularly in rural areas, often faces significant challenges due to long travel distances and limited access to healthcare facilities. These challenges can result in critical delays in medical care, adversely affecting patient outcomes. Addressing this issue is essential for improving survival rates and health outcomes in underserved regions. This study explored the potential of advanced air mobility to enhance emergency medical services by reducing patient transport times through the strategic placement of vertiports. Using North Dakota as a case study, the research developed a GIS-based optimization workflow to identify optimal vertiport locations that maximize time savings. The study highlighted the benefits of strategic vertiport placement at existing airports and hospital heliports to minimize community disruption and leverage underutilized infrastructure. A key finding was that the optimized mixed-mode routes could reduce patient transport times by up to 21.8 min compared with drive-only routes, significantly impacting emergency response efficiency. Additionally, the study revealed that more than 45% of the populated areas experienced reduced ground travel times due to the integration of vertiports, highlighting the strategic importance of vertiport placement in optimizing emergency medical services. The research also demonstrated the replicability of the GIS-based optimization model for other regions, offering valuable insights for policymakers and stakeholders in enhancing EMS through advanced air mobility solutions.\",\"PeriodicalId\":510156,\"journal\":{\"name\":\"Information\",\"volume\":\"23 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info15070397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15070397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatial Analysis of Advanced Air Mobility in Rural Healthcare Logistics
The transportation of patients in emergency medical situations, particularly in rural areas, often faces significant challenges due to long travel distances and limited access to healthcare facilities. These challenges can result in critical delays in medical care, adversely affecting patient outcomes. Addressing this issue is essential for improving survival rates and health outcomes in underserved regions. This study explored the potential of advanced air mobility to enhance emergency medical services by reducing patient transport times through the strategic placement of vertiports. Using North Dakota as a case study, the research developed a GIS-based optimization workflow to identify optimal vertiport locations that maximize time savings. The study highlighted the benefits of strategic vertiport placement at existing airports and hospital heliports to minimize community disruption and leverage underutilized infrastructure. A key finding was that the optimized mixed-mode routes could reduce patient transport times by up to 21.8 min compared with drive-only routes, significantly impacting emergency response efficiency. Additionally, the study revealed that more than 45% of the populated areas experienced reduced ground travel times due to the integration of vertiports, highlighting the strategic importance of vertiport placement in optimizing emergency medical services. The research also demonstrated the replicability of the GIS-based optimization model for other regions, offering valuable insights for policymakers and stakeholders in enhancing EMS through advanced air mobility solutions.