增强型心电信号分类

Vinaya Kulkarni, Sanah Naik, Suruchi Bibikar, Ankita Ochani, Sakshi Pratap
{"title":"增强型心电信号分类","authors":"Vinaya Kulkarni, Sanah Naik, Suruchi Bibikar, Ankita Ochani, Sakshi Pratap","doi":"10.47392/irjaeh.2024.0262","DOIUrl":null,"url":null,"abstract":"The increasing amount of medical data emphasizes the urgent need for efficient methods in classifying electrocardiogram (ECG) signals. While current approaches are valuable, they struggle to achieve both high sensitivity and specificity, limiting their effectiveness in timely cardiac diagnosis. These challenges underscore the importance of more robust methodologies to improve the accuracy of ECG signal classification. To tackle these issues, this research suggests a comprehensive approach using machine learning techniques. Our framework incorporates various algorithms such as Support Vector Machines (SVM), XGBoost, K-Nearest Neighbors (KNN), Logistic Regression, and an ensemble classifier. This ensemble method aims to leverage the strengths of individual models, enhancing the overall classification performance. The application of this approach shows promising results, with increased sensitivity and specificity in categorizing ECG signals. The versatility of our proposed framework has significant potential for various applications, contributing to advancements in cardiovascular health monitoring and diagnosis.","PeriodicalId":517766,"journal":{"name":"International Research Journal on Advanced Engineering Hub (IRJAEH)","volume":"19 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced ECG Signal Classification\",\"authors\":\"Vinaya Kulkarni, Sanah Naik, Suruchi Bibikar, Ankita Ochani, Sakshi Pratap\",\"doi\":\"10.47392/irjaeh.2024.0262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing amount of medical data emphasizes the urgent need for efficient methods in classifying electrocardiogram (ECG) signals. While current approaches are valuable, they struggle to achieve both high sensitivity and specificity, limiting their effectiveness in timely cardiac diagnosis. These challenges underscore the importance of more robust methodologies to improve the accuracy of ECG signal classification. To tackle these issues, this research suggests a comprehensive approach using machine learning techniques. Our framework incorporates various algorithms such as Support Vector Machines (SVM), XGBoost, K-Nearest Neighbors (KNN), Logistic Regression, and an ensemble classifier. This ensemble method aims to leverage the strengths of individual models, enhancing the overall classification performance. The application of this approach shows promising results, with increased sensitivity and specificity in categorizing ECG signals. The versatility of our proposed framework has significant potential for various applications, contributing to advancements in cardiovascular health monitoring and diagnosis.\",\"PeriodicalId\":517766,\"journal\":{\"name\":\"International Research Journal on Advanced Engineering Hub (IRJAEH)\",\"volume\":\"19 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal on Advanced Engineering Hub (IRJAEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47392/irjaeh.2024.0262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Engineering Hub (IRJAEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjaeh.2024.0262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着医疗数据量的不断增加,迫切需要高效的心电图(ECG)信号分类方法。虽然目前的方法很有价值,但它们难以实现高灵敏度和高特异性,从而限制了它们在及时诊断心脏疾病方面的有效性。这些挑战凸显了采用更强大的方法提高心电图信号分类准确性的重要性。为解决这些问题,本研究提出了一种使用机器学习技术的综合方法。我们的框架采用了多种算法,如支持向量机 (SVM)、XGBoost、K-近邻 (KNN)、逻辑回归和集合分类器。这种集合方法旨在利用单个模型的优势,提高整体分类性能。这种方法的应用显示出良好的效果,提高了心电信号分类的灵敏度和特异性。我们提出的框架具有多功能性,在各种应用中具有巨大潜力,有助于推动心血管健康监测和诊断的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced ECG Signal Classification
The increasing amount of medical data emphasizes the urgent need for efficient methods in classifying electrocardiogram (ECG) signals. While current approaches are valuable, they struggle to achieve both high sensitivity and specificity, limiting their effectiveness in timely cardiac diagnosis. These challenges underscore the importance of more robust methodologies to improve the accuracy of ECG signal classification. To tackle these issues, this research suggests a comprehensive approach using machine learning techniques. Our framework incorporates various algorithms such as Support Vector Machines (SVM), XGBoost, K-Nearest Neighbors (KNN), Logistic Regression, and an ensemble classifier. This ensemble method aims to leverage the strengths of individual models, enhancing the overall classification performance. The application of this approach shows promising results, with increased sensitivity and specificity in categorizing ECG signals. The versatility of our proposed framework has significant potential for various applications, contributing to advancements in cardiovascular health monitoring and diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信