Tianyi Wang, Yimeng Zhang, Xueyan Huang, Peifeng Su, M. Xiao, Shuanjin Wang, Sheng Huang, Dongmei Han, Yuezhong Meng
{"title":"设计弱溶解和强溶解聚合物电解质:系统提升高压锂金属电池的性能","authors":"Tianyi Wang, Yimeng Zhang, Xueyan Huang, Peifeng Su, M. Xiao, Shuanjin Wang, Sheng Huang, Dongmei Han, Yuezhong Meng","doi":"10.1002/sus2.219","DOIUrl":null,"url":null,"abstract":"Practical high‐voltage lithium metal batteries hold promise for high energy density applications, but face stability challenges in electrolytes for both 4 V‐class cathodes and lithium anode. To address this, we delve into the positive impacts of two crucial moieties in electrolyte chemistry: fluorine atom (‐F) and cyano group (‐CN) on the electrochemical performance of polyether electrolytes and lithium metal batteries. Cyano‐bearing polyether electrolytes possess strong solvation, accelerating Li+ desolvation with minimal SEI impact. Fluorinated polyether electrolytes possess weak solvation, and stabilize the lithium anode via preferential decomposition of F‐segment, exhibiting nearly 6000‐h stable cycling of lithium symmetric cell. Furthermore, the electron‐withdrawing properties of ‐F and ‐CN groups significantly bolster the high‐voltage tolerance of copolymer electrolyte, extending its operational range up to 5 V. This advancement enables the development of 4 V‐class lithium metal batteries compatible with various cathodes, including 4.45 V LiCoO2, 4.5 V LiNi0.8Co0.1Mn0.1O2, and 4.2 V LiNi0.5Co0.2Mn0.3O2. These findings provide insights into design principles centered around polymer components for high‐performance polymer electrolytes.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"11 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing weakly and strongly solvating polymer electrolytes: Systematically boosting high‐voltage lithium metal batteries\",\"authors\":\"Tianyi Wang, Yimeng Zhang, Xueyan Huang, Peifeng Su, M. Xiao, Shuanjin Wang, Sheng Huang, Dongmei Han, Yuezhong Meng\",\"doi\":\"10.1002/sus2.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Practical high‐voltage lithium metal batteries hold promise for high energy density applications, but face stability challenges in electrolytes for both 4 V‐class cathodes and lithium anode. To address this, we delve into the positive impacts of two crucial moieties in electrolyte chemistry: fluorine atom (‐F) and cyano group (‐CN) on the electrochemical performance of polyether electrolytes and lithium metal batteries. Cyano‐bearing polyether electrolytes possess strong solvation, accelerating Li+ desolvation with minimal SEI impact. Fluorinated polyether electrolytes possess weak solvation, and stabilize the lithium anode via preferential decomposition of F‐segment, exhibiting nearly 6000‐h stable cycling of lithium symmetric cell. Furthermore, the electron‐withdrawing properties of ‐F and ‐CN groups significantly bolster the high‐voltage tolerance of copolymer electrolyte, extending its operational range up to 5 V. This advancement enables the development of 4 V‐class lithium metal batteries compatible with various cathodes, including 4.45 V LiCoO2, 4.5 V LiNi0.8Co0.1Mn0.1O2, and 4.2 V LiNi0.5Co0.2Mn0.3O2. These findings provide insights into design principles centered around polymer components for high‐performance polymer electrolytes.\",\"PeriodicalId\":506315,\"journal\":{\"name\":\"SusMat\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SusMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sus2.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
实用高压锂金属电池有望实现高能量密度应用,但 4 V 级阴极和锂阳极电解质的稳定性面临挑战。为了解决这个问题,我们深入研究了电解质化学中两个关键分子:氟原子(-F)和氰基(-CN)对聚醚电解质和锂金属电池电化学性能的积极影响。含氰基的聚醚电解质具有很强的溶解能力,可加速 Li+ 的解溶解,同时将 SEI 的影响降至最低。氟化聚醚电解质具有弱溶解性,可通过 F 段的优先分解稳定锂阳极,在锂对称电池中表现出近 6000 小时的稳定循环。此外,-F 和 -CN 基团的吸电子特性显著提高了共聚物电解质的高压耐受性,将其工作范围扩展至 5 V。这一进步使 4 V 级锂金属电池的开发成为可能,这种电池兼容各种正极,包括 4.45 V LiCoO2、4.5 V LiNi0.8Co0.1Mn0.1O2 和 4.2 V LiNi0.5Co0.2Mn0.3O2。这些发现为以高性能聚合物电解质的聚合物成分为中心的设计原则提供了启示。
Designing weakly and strongly solvating polymer electrolytes: Systematically boosting high‐voltage lithium metal batteries
Practical high‐voltage lithium metal batteries hold promise for high energy density applications, but face stability challenges in electrolytes for both 4 V‐class cathodes and lithium anode. To address this, we delve into the positive impacts of two crucial moieties in electrolyte chemistry: fluorine atom (‐F) and cyano group (‐CN) on the electrochemical performance of polyether electrolytes and lithium metal batteries. Cyano‐bearing polyether electrolytes possess strong solvation, accelerating Li+ desolvation with minimal SEI impact. Fluorinated polyether electrolytes possess weak solvation, and stabilize the lithium anode via preferential decomposition of F‐segment, exhibiting nearly 6000‐h stable cycling of lithium symmetric cell. Furthermore, the electron‐withdrawing properties of ‐F and ‐CN groups significantly bolster the high‐voltage tolerance of copolymer electrolyte, extending its operational range up to 5 V. This advancement enables the development of 4 V‐class lithium metal batteries compatible with various cathodes, including 4.45 V LiCoO2, 4.5 V LiNi0.8Co0.1Mn0.1O2, and 4.2 V LiNi0.5Co0.2Mn0.3O2. These findings provide insights into design principles centered around polymer components for high‐performance polymer electrolytes.