高效检测安卓设备中的恶意软件,提高网络安全性

Faizur Rahaman.R, Dr. S. Prasanna
{"title":"高效检测安卓设备中的恶意软件,提高网络安全性","authors":"Faizur Rahaman.R, Dr. S. Prasanna","doi":"10.48175/ijetir-1241","DOIUrl":null,"url":null,"abstract":"The project introduces a novel framework for detecting Android malware based on permissions, utilizing multiple linear regression methods. Permissions play a crucial role in the security of the Android operating system, serving as fundamental indicators of an application's behavior. Through static analysis, the framework extracts application permissions and employs machine learning techniques to conduct security analyses.\nSpecifically, the framework employs multiple linear regression techniques to develop two classifiers for permission-based Android malware detection. These classifiers leverage the relationships between various permission attributes to accurately identify potentially malicious applications. Notably, the framework achieves notable performance levels using classification algorithms without the need for overly complex models.\nIn the project, the existing system utilizes the Random Forest (RF) algorithm, while the proposed system adopts the Support Vector Machine (SVM) algorithm. Both algorithms are evaluated in terms of accuracy, with the results demonstrating that the proposed SVM approach outperforms the existing RF method. This highlights the effectiveness of SVM in accurately detecting Android malware based on permission analysis.","PeriodicalId":341984,"journal":{"name":"International Journal of Advanced Research in Science, Communication and Technology","volume":"2 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Malware Detection in Android Devices to Improve Cyber Security\",\"authors\":\"Faizur Rahaman.R, Dr. S. Prasanna\",\"doi\":\"10.48175/ijetir-1241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The project introduces a novel framework for detecting Android malware based on permissions, utilizing multiple linear regression methods. Permissions play a crucial role in the security of the Android operating system, serving as fundamental indicators of an application's behavior. Through static analysis, the framework extracts application permissions and employs machine learning techniques to conduct security analyses.\\nSpecifically, the framework employs multiple linear regression techniques to develop two classifiers for permission-based Android malware detection. These classifiers leverage the relationships between various permission attributes to accurately identify potentially malicious applications. Notably, the framework achieves notable performance levels using classification algorithms without the need for overly complex models.\\nIn the project, the existing system utilizes the Random Forest (RF) algorithm, while the proposed system adopts the Support Vector Machine (SVM) algorithm. Both algorithms are evaluated in terms of accuracy, with the results demonstrating that the proposed SVM approach outperforms the existing RF method. This highlights the effectiveness of SVM in accurately detecting Android malware based on permission analysis.\",\"PeriodicalId\":341984,\"journal\":{\"name\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"volume\":\"2 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Science, Communication and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48175/ijetir-1241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Science, Communication and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48175/ijetir-1241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该项目采用多元线性回归方法,介绍了一种基于权限检测安卓恶意软件的新型框架。权限在安卓操作系统的安全性中起着至关重要的作用,是应用程序行为的基本指标。通过静态分析,该框架提取应用程序权限,并利用机器学习技术进行安全分析。具体来说,该框架利用多元线性回归技术开发了两个分类器,用于基于权限的安卓恶意软件检测。这些分类器利用各种权限属性之间的关系来准确识别潜在的恶意应用程序。值得注意的是,该框架利用分类算法实现了显著的性能水平,而不需要过于复杂的模型。在该项目中,现有系统采用随机森林(RF)算法,而拟议系统采用支持向量机(SVM)算法。对这两种算法的准确性进行了评估,结果表明拟议的 SVM 方法优于现有的 RF 方法。这凸显了 SVM 在基于权限分析准确检测 Android 恶意软件方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Malware Detection in Android Devices to Improve Cyber Security
The project introduces a novel framework for detecting Android malware based on permissions, utilizing multiple linear regression methods. Permissions play a crucial role in the security of the Android operating system, serving as fundamental indicators of an application's behavior. Through static analysis, the framework extracts application permissions and employs machine learning techniques to conduct security analyses. Specifically, the framework employs multiple linear regression techniques to develop two classifiers for permission-based Android malware detection. These classifiers leverage the relationships between various permission attributes to accurately identify potentially malicious applications. Notably, the framework achieves notable performance levels using classification algorithms without the need for overly complex models. In the project, the existing system utilizes the Random Forest (RF) algorithm, while the proposed system adopts the Support Vector Machine (SVM) algorithm. Both algorithms are evaluated in terms of accuracy, with the results demonstrating that the proposed SVM approach outperforms the existing RF method. This highlights the effectiveness of SVM in accurately detecting Android malware based on permission analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信