H. Hajaiej, Rohit Kumar, Tuhina Mukherjee, Linjie Song
{"title":"平面内混合各向异性薛定谔系统的存在与不存在结果","authors":"H. Hajaiej, Rohit Kumar, Tuhina Mukherjee, Linjie Song","doi":"10.3233/asy-241922","DOIUrl":null,"url":null,"abstract":"This article focuses on the existence and non-existence of solutions for the following system of local and nonlocal type − ∂ x x u + ( − Δ ) y s 1 u + u − u 2 s 1 − 1 = κ α h ( x , y ) u α − 1 v β in R 2 , − ∂ x x v + ( − Δ ) y s 2 v + v − v 2 s 2 − 1 = κ β h ( x , y ) u α v β − 1 in R 2 , u , v ⩾ 0 in R 2 , where s 1 , s 2 ∈ ( 0 , 1 ) , α, β > 1, α + β ⩽ min { 2 s 1 , 2 s 2 }, and 2 s i = 2 ( 1 + s i ) 1 − s i , i = 1 , 2. The existence of a ground state solution entirely depends on the behaviour of the parameter κ > 0 and on the function h. In this article, we prove that a ground state solution exists in the subcritical case if κ is large enough and h satisfies (H). Further, if κ becomes very small, then there is no solution to our system. The study of the critical case, i.e., s 1 = s 2 = s, α + β = 2 s , is more complex, and the solution exists only for large κ and radial h satisfying (H1). Finally, we establish a Pohozaev identity which enables us to prove the non-existence results under some smooth assumptions on h.","PeriodicalId":505560,"journal":{"name":"Asymptotic Analysis","volume":"32 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and non-existence results to a mixed anisotropic Schrödinger system in a plane\",\"authors\":\"H. Hajaiej, Rohit Kumar, Tuhina Mukherjee, Linjie Song\",\"doi\":\"10.3233/asy-241922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the existence and non-existence of solutions for the following system of local and nonlocal type − ∂ x x u + ( − Δ ) y s 1 u + u − u 2 s 1 − 1 = κ α h ( x , y ) u α − 1 v β in R 2 , − ∂ x x v + ( − Δ ) y s 2 v + v − v 2 s 2 − 1 = κ β h ( x , y ) u α v β − 1 in R 2 , u , v ⩾ 0 in R 2 , where s 1 , s 2 ∈ ( 0 , 1 ) , α, β > 1, α + β ⩽ min { 2 s 1 , 2 s 2 }, and 2 s i = 2 ( 1 + s i ) 1 − s i , i = 1 , 2. The existence of a ground state solution entirely depends on the behaviour of the parameter κ > 0 and on the function h. In this article, we prove that a ground state solution exists in the subcritical case if κ is large enough and h satisfies (H). Further, if κ becomes very small, then there is no solution to our system. The study of the critical case, i.e., s 1 = s 2 = s, α + β = 2 s , is more complex, and the solution exists only for large κ and radial h satisfying (H1). Finally, we establish a Pohozaev identity which enables us to prove the non-existence results under some smooth assumptions on h.\",\"PeriodicalId\":505560,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"32 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-241922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文主要研究以下局部和非局部型系统解的存在性和不存在性 - ∂ x x u + ( - Δ ) y s 1 u + u - u 2 s 1 - 1 = κ α h ( x , y ) u α - 1 v β in R 2 、- ∂ x x v + ( - Δ ) y s 2 v + v - v 2 s 2 - 1 = κ β h ( x , y ) u α v β - 1 in R 2 , u , v ⩾ 0 in R 2 、其中 s 1 , s 2∈ ( 0 , 1 ) , α, β > 1, α + β ⩽ min { 2 s 1 , 2 s 2 }, 2 s i = 2 ( 1 + s i ) 1 - s i , i = 1 , 2。本文将证明,如果 κ 足够大且 h 满足 (H),则在亚临界情况下存在基态解。此外,如果 κ 变得非常小,那么我们的系统就没有解。对临界情况,即 s 1 = s 2 = s, α + β = 2 s 的研究更为复杂,只有在大κ 和径向 h 满足 (H1) 时才存在解。最后,我们建立了一个 Pohozaev 特性,它使我们能够在一些关于 h 的平滑假设下证明不存在结果。
Existence and non-existence results to a mixed anisotropic Schrödinger system in a plane
This article focuses on the existence and non-existence of solutions for the following system of local and nonlocal type − ∂ x x u + ( − Δ ) y s 1 u + u − u 2 s 1 − 1 = κ α h ( x , y ) u α − 1 v β in R 2 , − ∂ x x v + ( − Δ ) y s 2 v + v − v 2 s 2 − 1 = κ β h ( x , y ) u α v β − 1 in R 2 , u , v ⩾ 0 in R 2 , where s 1 , s 2 ∈ ( 0 , 1 ) , α, β > 1, α + β ⩽ min { 2 s 1 , 2 s 2 }, and 2 s i = 2 ( 1 + s i ) 1 − s i , i = 1 , 2. The existence of a ground state solution entirely depends on the behaviour of the parameter κ > 0 and on the function h. In this article, we prove that a ground state solution exists in the subcritical case if κ is large enough and h satisfies (H). Further, if κ becomes very small, then there is no solution to our system. The study of the critical case, i.e., s 1 = s 2 = s, α + β = 2 s , is more complex, and the solution exists only for large κ and radial h satisfying (H1). Finally, we establish a Pohozaev identity which enables us to prove the non-existence results under some smooth assumptions on h.