{"title":"洛特卡-伏特拉系统的离散化及渐近焦距和前焦距集","authors":"Jean-Pierre Françoise, Daniele Fournier-Prunaret","doi":"10.1142/s0218127424501128","DOIUrl":null,"url":null,"abstract":"We revisit the Kahan–Hirota–Kimura discretization of a quadratic vector field. The corresponding discrete system is generated by successive iterations of a birational map [Formula: see text]. We include a proof of a formula for the Jacobian of this map. In the following, we essentially focus on the case of the Lotka–Volterra system. We discuss the notion of focal points and prefocal lines of the map [Formula: see text] and of its inverse [Formula: see text]. We show that the map [Formula: see text] is the product of two involutions. The nature of the fixed points of [Formula: see text] is studied. We introduce the notion of asymptotic focal and prefocal sets. We further provide a new proof of the theorem of Sanz-Serna. We show that the mapping [Formula: see text] is integrable for [Formula: see text] and that it preserves a pencil of conics (generic hyperbolas). To conclude, we provide several numerical simulations for [Formula: see text].","PeriodicalId":506426,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"36 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discretization of the Lotka–Volterra System and Asymptotic Focal and Prefocal Sets\",\"authors\":\"Jean-Pierre Françoise, Daniele Fournier-Prunaret\",\"doi\":\"10.1142/s0218127424501128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the Kahan–Hirota–Kimura discretization of a quadratic vector field. The corresponding discrete system is generated by successive iterations of a birational map [Formula: see text]. We include a proof of a formula for the Jacobian of this map. In the following, we essentially focus on the case of the Lotka–Volterra system. We discuss the notion of focal points and prefocal lines of the map [Formula: see text] and of its inverse [Formula: see text]. We show that the map [Formula: see text] is the product of two involutions. The nature of the fixed points of [Formula: see text] is studied. We introduce the notion of asymptotic focal and prefocal sets. We further provide a new proof of the theorem of Sanz-Serna. We show that the mapping [Formula: see text] is integrable for [Formula: see text] and that it preserves a pencil of conics (generic hyperbolas). To conclude, we provide several numerical simulations for [Formula: see text].\",\"PeriodicalId\":506426,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424501128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424501128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discretization of the Lotka–Volterra System and Asymptotic Focal and Prefocal Sets
We revisit the Kahan–Hirota–Kimura discretization of a quadratic vector field. The corresponding discrete system is generated by successive iterations of a birational map [Formula: see text]. We include a proof of a formula for the Jacobian of this map. In the following, we essentially focus on the case of the Lotka–Volterra system. We discuss the notion of focal points and prefocal lines of the map [Formula: see text] and of its inverse [Formula: see text]. We show that the map [Formula: see text] is the product of two involutions. The nature of the fixed points of [Formula: see text] is studied. We introduce the notion of asymptotic focal and prefocal sets. We further provide a new proof of the theorem of Sanz-Serna. We show that the mapping [Formula: see text] is integrable for [Formula: see text] and that it preserves a pencil of conics (generic hyperbolas). To conclude, we provide several numerical simulations for [Formula: see text].