洛特卡-伏特拉系统的离散化及渐近焦距和前焦距集

Jean-Pierre Françoise, Daniele Fournier-Prunaret
{"title":"洛特卡-伏特拉系统的离散化及渐近焦距和前焦距集","authors":"Jean-Pierre Françoise, Daniele Fournier-Prunaret","doi":"10.1142/s0218127424501128","DOIUrl":null,"url":null,"abstract":"We revisit the Kahan–Hirota–Kimura discretization of a quadratic vector field. The corresponding discrete system is generated by successive iterations of a birational map [Formula: see text]. We include a proof of a formula for the Jacobian of this map. In the following, we essentially focus on the case of the Lotka–Volterra system. We discuss the notion of focal points and prefocal lines of the map [Formula: see text] and of its inverse [Formula: see text]. We show that the map [Formula: see text] is the product of two involutions. The nature of the fixed points of [Formula: see text] is studied. We introduce the notion of asymptotic focal and prefocal sets. We further provide a new proof of the theorem of Sanz-Serna. We show that the mapping [Formula: see text] is integrable for [Formula: see text] and that it preserves a pencil of conics (generic hyperbolas). To conclude, we provide several numerical simulations for [Formula: see text].","PeriodicalId":506426,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"36 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discretization of the Lotka–Volterra System and Asymptotic Focal and Prefocal Sets\",\"authors\":\"Jean-Pierre Françoise, Daniele Fournier-Prunaret\",\"doi\":\"10.1142/s0218127424501128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the Kahan–Hirota–Kimura discretization of a quadratic vector field. The corresponding discrete system is generated by successive iterations of a birational map [Formula: see text]. We include a proof of a formula for the Jacobian of this map. In the following, we essentially focus on the case of the Lotka–Volterra system. We discuss the notion of focal points and prefocal lines of the map [Formula: see text] and of its inverse [Formula: see text]. We show that the map [Formula: see text] is the product of two involutions. The nature of the fixed points of [Formula: see text] is studied. We introduce the notion of asymptotic focal and prefocal sets. We further provide a new proof of the theorem of Sanz-Serna. We show that the mapping [Formula: see text] is integrable for [Formula: see text] and that it preserves a pencil of conics (generic hyperbolas). To conclude, we provide several numerical simulations for [Formula: see text].\",\"PeriodicalId\":506426,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424501128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424501128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们重温二次向量场的 Kahan-Hirota-Kimura 离散化。相应的离散系统是由一个双向映射的连续迭代生成的[公式:见正文]。我们附上了这个映射的雅各布公式的证明。下面,我们主要关注洛特卡-伏特拉系统的情况。我们将讨论映射[公式:见正文]及其逆映射[公式:见正文]的焦点和前焦点线的概念。我们证明了映射[公式:见正文]是两个渐开线的乘积。研究了[公式:见正文]定点的性质。我们引入了渐近焦点集和前焦点集的概念。我们进一步提供了桑兹-塞纳定理的新证明。我们证明了映射[公式:见正文]对于[公式:见正文]是可积分的,并且它保留了圆锥(泛双曲线)的铅笔。最后,我们对[公式:见正文]进行了几次数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discretization of the Lotka–Volterra System and Asymptotic Focal and Prefocal Sets
We revisit the Kahan–Hirota–Kimura discretization of a quadratic vector field. The corresponding discrete system is generated by successive iterations of a birational map [Formula: see text]. We include a proof of a formula for the Jacobian of this map. In the following, we essentially focus on the case of the Lotka–Volterra system. We discuss the notion of focal points and prefocal lines of the map [Formula: see text] and of its inverse [Formula: see text]. We show that the map [Formula: see text] is the product of two involutions. The nature of the fixed points of [Formula: see text] is studied. We introduce the notion of asymptotic focal and prefocal sets. We further provide a new proof of the theorem of Sanz-Serna. We show that the mapping [Formula: see text] is integrable for [Formula: see text] and that it preserves a pencil of conics (generic hyperbolas). To conclude, we provide several numerical simulations for [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信