Hristo I. Beloev, Abay Dostiyarov, N. Sarakeshova, A. Makzumova, Iliya K. Iliev
{"title":"热水锅炉和燃气轮机微焰燃烧器的实验研究成果","authors":"Hristo I. Beloev, Abay Dostiyarov, N. Sarakeshova, A. Makzumova, Iliya K. Iliev","doi":"10.3390/en17143408","DOIUrl":null,"url":null,"abstract":"The study aims to address the need for cleaner and more efficient combustion technologies in the context of global energy demand and sustainability goals. It focuses on microflame techniques to enhance the performance of gas turbines and water heating boilers. This research investigated, for the first time, the operation of a micromodular burner for hot water boilers and a microflame burner for gas turbines, based on patented inventions. Methods for assessing efficiency included analyzing heat flows, fuel conversion rates to thermal energy, and emission analysis. Using high-precision measuring equipment, such as TESTO 350-XL, thermocouples, flow meters, and others, optimal operating modes were determined for the gas turbine combustion chamber and hot water boiler. This resulted in achieving high efficiency and reducing harmful emission levels (NOx < 15 ppm, CO < 140 ppm). Theoretical calculations were compared with experimental data, confirming the reliability of the results obtained.","PeriodicalId":504870,"journal":{"name":"Energies","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results of Experimental Research on Microflame Burners for Hot Water Boilers and Gas Turbines\",\"authors\":\"Hristo I. Beloev, Abay Dostiyarov, N. Sarakeshova, A. Makzumova, Iliya K. Iliev\",\"doi\":\"10.3390/en17143408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aims to address the need for cleaner and more efficient combustion technologies in the context of global energy demand and sustainability goals. It focuses on microflame techniques to enhance the performance of gas turbines and water heating boilers. This research investigated, for the first time, the operation of a micromodular burner for hot water boilers and a microflame burner for gas turbines, based on patented inventions. Methods for assessing efficiency included analyzing heat flows, fuel conversion rates to thermal energy, and emission analysis. Using high-precision measuring equipment, such as TESTO 350-XL, thermocouples, flow meters, and others, optimal operating modes were determined for the gas turbine combustion chamber and hot water boiler. This resulted in achieving high efficiency and reducing harmful emission levels (NOx < 15 ppm, CO < 140 ppm). Theoretical calculations were compared with experimental data, confirming the reliability of the results obtained.\",\"PeriodicalId\":504870,\"journal\":{\"name\":\"Energies\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/en17143408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Results of Experimental Research on Microflame Burners for Hot Water Boilers and Gas Turbines
The study aims to address the need for cleaner and more efficient combustion technologies in the context of global energy demand and sustainability goals. It focuses on microflame techniques to enhance the performance of gas turbines and water heating boilers. This research investigated, for the first time, the operation of a micromodular burner for hot water boilers and a microflame burner for gas turbines, based on patented inventions. Methods for assessing efficiency included analyzing heat flows, fuel conversion rates to thermal energy, and emission analysis. Using high-precision measuring equipment, such as TESTO 350-XL, thermocouples, flow meters, and others, optimal operating modes were determined for the gas turbine combustion chamber and hot water boiler. This resulted in achieving high efficiency and reducing harmful emission levels (NOx < 15 ppm, CO < 140 ppm). Theoretical calculations were compared with experimental data, confirming the reliability of the results obtained.