通过统计动态降尺度方法对亚马孙西南部地区进行季节内尺度的集合水文预测

Weslley de Brito Gomes, Praky Satyamurty, F. W. Correia, S. C. Chou, A. Fleischmann, F. Papa, Leonardo Alves Vergasta, A. Lyra
{"title":"通过统计动态降尺度方法对亚马孙西南部地区进行季节内尺度的集合水文预测","authors":"Weslley de Brito Gomes, Praky Satyamurty, F. W. Correia, S. C. Chou, A. Fleischmann, F. Papa, Leonardo Alves Vergasta, A. Lyra","doi":"10.2166/wcc.2024.262","DOIUrl":null,"url":null,"abstract":"\n \n We developed and analyzed the performance of an ensemble forecasting system for the Madeira River basin, the largest sub-basin of the Amazon, with forecasts up to 30 days under different hydrometeorological conditions. We used outputs from the regional Eta model of precipitation and global climatological data as inputs to a large-scale hydrological model. Bias correction of precipitation through quantile mapping significantly improved the results, achieving a hit rate >70%. The system demonstrated the ability to discriminate between high, medium, and low flow conditions. Forecast performance is better for larger catchment areas. This system is expected to increase decision-making efficiency for flood and drought situations in the largest Amazon tributary.","PeriodicalId":506949,"journal":{"name":"Journal of Water and Climate Change","volume":"52 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble hydrological predictions at an intraseasonal scale through a statistical–dynamical downscaling approach over southwestern Amazonia\",\"authors\":\"Weslley de Brito Gomes, Praky Satyamurty, F. W. Correia, S. C. Chou, A. Fleischmann, F. Papa, Leonardo Alves Vergasta, A. Lyra\",\"doi\":\"10.2166/wcc.2024.262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n We developed and analyzed the performance of an ensemble forecasting system for the Madeira River basin, the largest sub-basin of the Amazon, with forecasts up to 30 days under different hydrometeorological conditions. We used outputs from the regional Eta model of precipitation and global climatological data as inputs to a large-scale hydrological model. Bias correction of precipitation through quantile mapping significantly improved the results, achieving a hit rate >70%. The system demonstrated the ability to discriminate between high, medium, and low flow conditions. Forecast performance is better for larger catchment areas. This system is expected to increase decision-making efficiency for flood and drought situations in the largest Amazon tributary.\",\"PeriodicalId\":506949,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"52 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2024.262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发并分析了马德拉河流域的集合预报系统的性能,该流域是亚马逊河最大的子流域,在不同的水文气象条件下可进行长达 30 天的预报。我们将区域 Eta 降水模型的输出结果和全球气候数据作为大规模水文模型的输入。通过量子图对降水量进行偏差校正,显著改善了结果,命中率大于 70%。该系统展示了区分大、中、小流量条件的能力。对于较大的集水区,预测效果更好。该系统有望提高亚马逊最大支流洪水和干旱情况下的决策效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble hydrological predictions at an intraseasonal scale through a statistical–dynamical downscaling approach over southwestern Amazonia
We developed and analyzed the performance of an ensemble forecasting system for the Madeira River basin, the largest sub-basin of the Amazon, with forecasts up to 30 days under different hydrometeorological conditions. We used outputs from the regional Eta model of precipitation and global climatological data as inputs to a large-scale hydrological model. Bias correction of precipitation through quantile mapping significantly improved the results, achieving a hit rate >70%. The system demonstrated the ability to discriminate between high, medium, and low flow conditions. Forecast performance is better for larger catchment areas. This system is expected to increase decision-making efficiency for flood and drought situations in the largest Amazon tributary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信