{"title":"关于中压配电器所用材料的老化退化问题","authors":"G. Popa, Dimitar Aleksiev Nikolov, C. Diniș","doi":"10.3390/en17143418","DOIUrl":null,"url":null,"abstract":"The medium-voltage components in the ignition installations for gasoline engines contain electroinsulating materials that lose their properties over time. The purpose of this paper is to measure and analyze the insulation resistance, dielectric absorption ratio and polarization index of the insulation of materials (three types of materials) used for medium-voltage distributors, for several operating periods, in automotive ignition installations. Experiments were conducted with old (operation tens of thousands of km, some with surfaces that have been cleaned) and new medium-voltage distributors, and a megohmmeter was used to measure, over time, the insulation resistance between the central terminal and the output terminals at different test voltages. The insulation resistance of the distributors depends on the use: in the old ones, they have values of tens of GΩ (e.g., up to 100 GΩ) and, in the new ones, of the order of TΩ (e.g., 4–7 TΩ). The more distributors are used, for the same distributor, there are greater differences between the measurements made between terminals and the average values (87% for used distributors, respectively, 2% for new ones). For new or less used distributors, higher values were obtained for the dielectric absorption ratio (1.26–1.27; for used ones, 0.91–0.95) and polarization index (1.15–1.25; for used ones, 0.96–1.15). The results show the importance of the volume insulation resistance of the electroinsulating material compared to the surface resistance and the insignificant improvement when cleaning the internal and external surfaces of the medium-voltage distributors.","PeriodicalId":504870,"journal":{"name":"Energies","volume":"53 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the Aged Degradation of the Materials Used for Medium-Voltage Distributors\",\"authors\":\"G. Popa, Dimitar Aleksiev Nikolov, C. Diniș\",\"doi\":\"10.3390/en17143418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The medium-voltage components in the ignition installations for gasoline engines contain electroinsulating materials that lose their properties over time. The purpose of this paper is to measure and analyze the insulation resistance, dielectric absorption ratio and polarization index of the insulation of materials (three types of materials) used for medium-voltage distributors, for several operating periods, in automotive ignition installations. Experiments were conducted with old (operation tens of thousands of km, some with surfaces that have been cleaned) and new medium-voltage distributors, and a megohmmeter was used to measure, over time, the insulation resistance between the central terminal and the output terminals at different test voltages. The insulation resistance of the distributors depends on the use: in the old ones, they have values of tens of GΩ (e.g., up to 100 GΩ) and, in the new ones, of the order of TΩ (e.g., 4–7 TΩ). The more distributors are used, for the same distributor, there are greater differences between the measurements made between terminals and the average values (87% for used distributors, respectively, 2% for new ones). For new or less used distributors, higher values were obtained for the dielectric absorption ratio (1.26–1.27; for used ones, 0.91–0.95) and polarization index (1.15–1.25; for used ones, 0.96–1.15). The results show the importance of the volume insulation resistance of the electroinsulating material compared to the surface resistance and the insignificant improvement when cleaning the internal and external surfaces of the medium-voltage distributors.\",\"PeriodicalId\":504870,\"journal\":{\"name\":\"Energies\",\"volume\":\"53 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/en17143418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
About the Aged Degradation of the Materials Used for Medium-Voltage Distributors
The medium-voltage components in the ignition installations for gasoline engines contain electroinsulating materials that lose their properties over time. The purpose of this paper is to measure and analyze the insulation resistance, dielectric absorption ratio and polarization index of the insulation of materials (three types of materials) used for medium-voltage distributors, for several operating periods, in automotive ignition installations. Experiments were conducted with old (operation tens of thousands of km, some with surfaces that have been cleaned) and new medium-voltage distributors, and a megohmmeter was used to measure, over time, the insulation resistance between the central terminal and the output terminals at different test voltages. The insulation resistance of the distributors depends on the use: in the old ones, they have values of tens of GΩ (e.g., up to 100 GΩ) and, in the new ones, of the order of TΩ (e.g., 4–7 TΩ). The more distributors are used, for the same distributor, there are greater differences between the measurements made between terminals and the average values (87% for used distributors, respectively, 2% for new ones). For new or less used distributors, higher values were obtained for the dielectric absorption ratio (1.26–1.27; for used ones, 0.91–0.95) and polarization index (1.15–1.25; for used ones, 0.96–1.15). The results show the importance of the volume insulation resistance of the electroinsulating material compared to the surface resistance and the insignificant improvement when cleaning the internal and external surfaces of the medium-voltage distributors.