Yuming Xiang, Yonghua Sun, Guolin Li, Xiangjuan Liu, Lin Liu, Fangwei Zhao, Xibing Li
{"title":"超薄微热管的传热传质性能研究","authors":"Yuming Xiang, Yonghua Sun, Guolin Li, Xiangjuan Liu, Lin Liu, Fangwei Zhao, Xibing Li","doi":"10.3390/en17143426","DOIUrl":null,"url":null,"abstract":"With increased heat control requirements for high-heat-flux products in a narrow heat dissipation space, the ultra-thin micro-heat pipe (MHP) with high heat transfer performance has become an ideal heat dissipation component. In this study, the computational fluid dynamics (CFD) method is used to conduct three-dimensional modeling based on the geometric structure characteristics of an ultra-thin MHP. The capillary pressure of the sintered wick is represented by the modified parameter, and a simple and valuable heat and mass transfer model of the ultra-thin MHP is established by fitting the real experimental data through parameter modification. The flow situation of the working medium inside the ultra-thin MHP is analyzed based on the abovementioned parameters. The results show that when the modified parameter is α = 1.5, the temperature equalization requirements of the ultra-thin MHP can be met to the best degree. Moreover, with an increase in heating power, the error value between the surface temperature data of the model and the experimental data of the ultra-thin MHP sample decreases. Under different heating powers, the working medium inside the ultra-thin MHP has the same flow trend. In addition, a 40% increase in temperature difference is found at the junction of the heating section and the adiabatic section, leading to a fluctuation in the temperature gradient on the heat pipe surface. The research results provide a theoretical basis for the model establishment, heat and mass transfer performance investigation, and parameter optimization of ultra-thin MHPs.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Heat and Mass Transfer Performance of Ultra-Thin Micro-Heat Pipes\",\"authors\":\"Yuming Xiang, Yonghua Sun, Guolin Li, Xiangjuan Liu, Lin Liu, Fangwei Zhao, Xibing Li\",\"doi\":\"10.3390/en17143426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increased heat control requirements for high-heat-flux products in a narrow heat dissipation space, the ultra-thin micro-heat pipe (MHP) with high heat transfer performance has become an ideal heat dissipation component. In this study, the computational fluid dynamics (CFD) method is used to conduct three-dimensional modeling based on the geometric structure characteristics of an ultra-thin MHP. The capillary pressure of the sintered wick is represented by the modified parameter, and a simple and valuable heat and mass transfer model of the ultra-thin MHP is established by fitting the real experimental data through parameter modification. The flow situation of the working medium inside the ultra-thin MHP is analyzed based on the abovementioned parameters. The results show that when the modified parameter is α = 1.5, the temperature equalization requirements of the ultra-thin MHP can be met to the best degree. Moreover, with an increase in heating power, the error value between the surface temperature data of the model and the experimental data of the ultra-thin MHP sample decreases. Under different heating powers, the working medium inside the ultra-thin MHP has the same flow trend. In addition, a 40% increase in temperature difference is found at the junction of the heating section and the adiabatic section, leading to a fluctuation in the temperature gradient on the heat pipe surface. The research results provide a theoretical basis for the model establishment, heat and mass transfer performance investigation, and parameter optimization of ultra-thin MHPs.\",\"PeriodicalId\":504870,\"journal\":{\"name\":\"Energies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/en17143426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on Heat and Mass Transfer Performance of Ultra-Thin Micro-Heat Pipes
With increased heat control requirements for high-heat-flux products in a narrow heat dissipation space, the ultra-thin micro-heat pipe (MHP) with high heat transfer performance has become an ideal heat dissipation component. In this study, the computational fluid dynamics (CFD) method is used to conduct three-dimensional modeling based on the geometric structure characteristics of an ultra-thin MHP. The capillary pressure of the sintered wick is represented by the modified parameter, and a simple and valuable heat and mass transfer model of the ultra-thin MHP is established by fitting the real experimental data through parameter modification. The flow situation of the working medium inside the ultra-thin MHP is analyzed based on the abovementioned parameters. The results show that when the modified parameter is α = 1.5, the temperature equalization requirements of the ultra-thin MHP can be met to the best degree. Moreover, with an increase in heating power, the error value between the surface temperature data of the model and the experimental data of the ultra-thin MHP sample decreases. Under different heating powers, the working medium inside the ultra-thin MHP has the same flow trend. In addition, a 40% increase in temperature difference is found at the junction of the heating section and the adiabatic section, leading to a fluctuation in the temperature gradient on the heat pipe surface. The research results provide a theoretical basis for the model establishment, heat and mass transfer performance investigation, and parameter optimization of ultra-thin MHPs.