人工智能在可持续建筑生命周期中的应用系统回顾

Bukola Adejoke Adewale, Vincent Onyedikachi Ene, B. Ogunbayo, C. Aigbavboa
{"title":"人工智能在可持续建筑生命周期中的应用系统回顾","authors":"Bukola Adejoke Adewale, Vincent Onyedikachi Ene, B. Ogunbayo, C. Aigbavboa","doi":"10.3390/buildings14072137","DOIUrl":null,"url":null,"abstract":"Buildings significantly contribute to global energy consumption and greenhouse gas emissions. This systematic literature review explores the potential of artificial intelegence (AI) to enhance sustainability throughout a building’s lifecycle. The review identifies AI technologies applicable to sustainable building practices, examines their influence, and analyses implementation challenges. The findings reveal AI’s capabilities in optimising energy efficiency, enabling predictive maintenance, and aiding in design simulation. Advanced machine learning algorithms facilitate data-driven analysis, while digital twins provide real-time insights for decision-making. The review also identifies barriers to AI adoption, including cost concerns, data security risks, and implementation challenges. While AI offers innovative solutions for energy optimisation and environmentally conscious practices, addressing technical and practical challenges is crucial for its successful integration in sustainable building practices.","PeriodicalId":505657,"journal":{"name":"Buildings","volume":"97 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Systematic Review of the Applications of AI in a Sustainable Building’s Lifecycle\",\"authors\":\"Bukola Adejoke Adewale, Vincent Onyedikachi Ene, B. Ogunbayo, C. Aigbavboa\",\"doi\":\"10.3390/buildings14072137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Buildings significantly contribute to global energy consumption and greenhouse gas emissions. This systematic literature review explores the potential of artificial intelegence (AI) to enhance sustainability throughout a building’s lifecycle. The review identifies AI technologies applicable to sustainable building practices, examines their influence, and analyses implementation challenges. The findings reveal AI’s capabilities in optimising energy efficiency, enabling predictive maintenance, and aiding in design simulation. Advanced machine learning algorithms facilitate data-driven analysis, while digital twins provide real-time insights for decision-making. The review also identifies barriers to AI adoption, including cost concerns, data security risks, and implementation challenges. While AI offers innovative solutions for energy optimisation and environmentally conscious practices, addressing technical and practical challenges is crucial for its successful integration in sustainable building practices.\",\"PeriodicalId\":505657,\"journal\":{\"name\":\"Buildings\",\"volume\":\"97 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14072137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/buildings14072137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建筑是全球能源消耗和温室气体排放的主要来源。本系统性文献综述探讨了人工智能(AI)在整个建筑生命周期内提高可持续性的潜力。该综述确定了适用于可持续建筑实践的人工智能技术,研究了这些技术的影响,并分析了实施方面的挑战。研究结果揭示了人工智能在优化能源效率、实现预测性维护和协助设计模拟方面的能力。先进的机器学习算法促进了数据驱动分析,而数字双胞胎则为决策提供了实时见解。审查还指出了采用人工智能的障碍,包括成本问题、数据安全风险和实施挑战。虽然人工智能为能源优化和环保实践提供了创新解决方案,但要将其成功融入可持续建筑实践,解决技术和实际挑战至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systematic Review of the Applications of AI in a Sustainable Building’s Lifecycle
Buildings significantly contribute to global energy consumption and greenhouse gas emissions. This systematic literature review explores the potential of artificial intelegence (AI) to enhance sustainability throughout a building’s lifecycle. The review identifies AI technologies applicable to sustainable building practices, examines their influence, and analyses implementation challenges. The findings reveal AI’s capabilities in optimising energy efficiency, enabling predictive maintenance, and aiding in design simulation. Advanced machine learning algorithms facilitate data-driven analysis, while digital twins provide real-time insights for decision-making. The review also identifies barriers to AI adoption, including cost concerns, data security risks, and implementation challenges. While AI offers innovative solutions for energy optimisation and environmentally conscious practices, addressing technical and practical challenges is crucial for its successful integration in sustainable building practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信