Lei Wang, Jianwei Zhang, Wenbing Yang, Song Gu, Shanmin Yang
{"title":"带空间约束的二维人体骨骼动作识别","authors":"Lei Wang, Jianwei Zhang, Wenbing Yang, Song Gu, Shanmin Yang","doi":"10.1049/cvi2.12296","DOIUrl":null,"url":null,"abstract":"<p>Human actions are predominantly presented in 2D format in video surveillance scenarios, which hinders the accurate determination of action details not apparent in 2D data. Depth estimation can aid human action recognition tasks, enhancing accuracy with neural networks. However, reliance on images for depth estimation requires extensive computational resources and cannot utilise the connectivity between human body structures. Besides, the depth information may not accurately reflect actual depth ranges, necessitating improved reliability. Therefore, a 2D human skeleton action recognition method with spatial constraints (2D-SCHAR) is introduced. 2D-SCHAR employs graph convolution networks to process graph-structured human action skeleton data comprising three parts: depth estimation, spatial transformation, and action recognition. The initial two components, which infer 3D information from 2D human skeleton actions and generate spatial transformation parameters to correct abnormal deviations in action data, support the latter in the model to enhance the accuracy of action recognition. The model is designed in an end-to-end, multitasking manner, allowing parameter sharing among these three components to boost performance. The experimental results validate the model's effectiveness and superiority in human skeleton action recognition.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"968-981"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12296","citationCount":"0","resultStr":"{\"title\":\"2D human skeleton action recognition with spatial constraints\",\"authors\":\"Lei Wang, Jianwei Zhang, Wenbing Yang, Song Gu, Shanmin Yang\",\"doi\":\"10.1049/cvi2.12296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human actions are predominantly presented in 2D format in video surveillance scenarios, which hinders the accurate determination of action details not apparent in 2D data. Depth estimation can aid human action recognition tasks, enhancing accuracy with neural networks. However, reliance on images for depth estimation requires extensive computational resources and cannot utilise the connectivity between human body structures. Besides, the depth information may not accurately reflect actual depth ranges, necessitating improved reliability. Therefore, a 2D human skeleton action recognition method with spatial constraints (2D-SCHAR) is introduced. 2D-SCHAR employs graph convolution networks to process graph-structured human action skeleton data comprising three parts: depth estimation, spatial transformation, and action recognition. The initial two components, which infer 3D information from 2D human skeleton actions and generate spatial transformation parameters to correct abnormal deviations in action data, support the latter in the model to enhance the accuracy of action recognition. The model is designed in an end-to-end, multitasking manner, allowing parameter sharing among these three components to boost performance. The experimental results validate the model's effectiveness and superiority in human skeleton action recognition.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 7\",\"pages\":\"968-981\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12296\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12296\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12296","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
2D human skeleton action recognition with spatial constraints
Human actions are predominantly presented in 2D format in video surveillance scenarios, which hinders the accurate determination of action details not apparent in 2D data. Depth estimation can aid human action recognition tasks, enhancing accuracy with neural networks. However, reliance on images for depth estimation requires extensive computational resources and cannot utilise the connectivity between human body structures. Besides, the depth information may not accurately reflect actual depth ranges, necessitating improved reliability. Therefore, a 2D human skeleton action recognition method with spatial constraints (2D-SCHAR) is introduced. 2D-SCHAR employs graph convolution networks to process graph-structured human action skeleton data comprising three parts: depth estimation, spatial transformation, and action recognition. The initial two components, which infer 3D information from 2D human skeleton actions and generate spatial transformation parameters to correct abnormal deviations in action data, support the latter in the model to enhance the accuracy of action recognition. The model is designed in an end-to-end, multitasking manner, allowing parameter sharing among these three components to boost performance. The experimental results validate the model's effectiveness and superiority in human skeleton action recognition.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf