{"title":"模糊双矩阵游戏中风险规避的影响","authors":"Chuanyang Xu, Wanting Zhao, Zhongwei Feng","doi":"10.3390/axioms13070469","DOIUrl":null,"url":null,"abstract":"In bimatrix games with symmetric triangular fuzzy payoffs, our work defines an (α, β)-risk aversion Nash equilibrium ((α, β)-RANE) and presents its sufficient and necessary condition. Our work also discusses the relationships between the (α, β)-RANE and a mixed-strategy Nash equilibrium (MSNE) in a bimatrix game with a risk-averse player 2 and certain payoffs. Finally, considering 2 × 2 bimatrix games with STFPs, we find the conditions where the increase in player 2’s risk-aversion level hurts or benefits himself/herself.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"121 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Risk Aversion in Fuzzy Bimatrix Games\",\"authors\":\"Chuanyang Xu, Wanting Zhao, Zhongwei Feng\",\"doi\":\"10.3390/axioms13070469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In bimatrix games with symmetric triangular fuzzy payoffs, our work defines an (α, β)-risk aversion Nash equilibrium ((α, β)-RANE) and presents its sufficient and necessary condition. Our work also discusses the relationships between the (α, β)-RANE and a mixed-strategy Nash equilibrium (MSNE) in a bimatrix game with a risk-averse player 2 and certain payoffs. Finally, considering 2 × 2 bimatrix games with STFPs, we find the conditions where the increase in player 2’s risk-aversion level hurts or benefits himself/herself.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"121 37\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In bimatrix games with symmetric triangular fuzzy payoffs, our work defines an (α, β)-risk aversion Nash equilibrium ((α, β)-RANE) and presents its sufficient and necessary condition. Our work also discusses the relationships between the (α, β)-RANE and a mixed-strategy Nash equilibrium (MSNE) in a bimatrix game with a risk-averse player 2 and certain payoffs. Finally, considering 2 × 2 bimatrix games with STFPs, we find the conditions where the increase in player 2’s risk-aversion level hurts or benefits himself/herself.