模糊双矩阵游戏中风险规避的影响

Axioms Pub Date : 2024-07-11 DOI:10.3390/axioms13070469
Chuanyang Xu, Wanting Zhao, Zhongwei Feng
{"title":"模糊双矩阵游戏中风险规避的影响","authors":"Chuanyang Xu, Wanting Zhao, Zhongwei Feng","doi":"10.3390/axioms13070469","DOIUrl":null,"url":null,"abstract":"In bimatrix games with symmetric triangular fuzzy payoffs, our work defines an (α, β)-risk aversion Nash equilibrium ((α, β)-RANE) and presents its sufficient and necessary condition. Our work also discusses the relationships between the (α, β)-RANE and a mixed-strategy Nash equilibrium (MSNE) in a bimatrix game with a risk-averse player 2 and certain payoffs. Finally, considering 2 × 2 bimatrix games with STFPs, we find the conditions where the increase in player 2’s risk-aversion level hurts or benefits himself/herself.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"121 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Risk Aversion in Fuzzy Bimatrix Games\",\"authors\":\"Chuanyang Xu, Wanting Zhao, Zhongwei Feng\",\"doi\":\"10.3390/axioms13070469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In bimatrix games with symmetric triangular fuzzy payoffs, our work defines an (α, β)-risk aversion Nash equilibrium ((α, β)-RANE) and presents its sufficient and necessary condition. Our work also discusses the relationships between the (α, β)-RANE and a mixed-strategy Nash equilibrium (MSNE) in a bimatrix game with a risk-averse player 2 and certain payoffs. Finally, considering 2 × 2 bimatrix games with STFPs, we find the conditions where the increase in player 2’s risk-aversion level hurts or benefits himself/herself.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"121 37\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有对称三角形模糊报酬的双矩阵博弈中,我们的研究定义了(α,β)-风险规避纳什均衡((α,β)-RANE),并提出了其充分必要条件。我们的研究还讨论了双矩阵博弈中的(α, β)-RANE 和混合策略纳什均衡(MSNE)之间的关系,双矩阵博弈中有一个风险规避者 2 和一定的报酬。最后,考虑到具有 STFPs 的 2 × 2 双矩阵博弈,我们找到了博弈方 2 的风险规避水平提高对自己有利还是不利的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Risk Aversion in Fuzzy Bimatrix Games
In bimatrix games with symmetric triangular fuzzy payoffs, our work defines an (α, β)-risk aversion Nash equilibrium ((α, β)-RANE) and presents its sufficient and necessary condition. Our work also discusses the relationships between the (α, β)-RANE and a mixed-strategy Nash equilibrium (MSNE) in a bimatrix game with a risk-averse player 2 and certain payoffs. Finally, considering 2 × 2 bimatrix games with STFPs, we find the conditions where the increase in player 2’s risk-aversion level hurts or benefits himself/herself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信