ViMedNER:越南语医疗命名实体识别数据集

Q2 Engineering
Pham Van Duong, T. Trinh, Minh-Tien Nguyen, Huy-The Vu, Minh Chuan Pham, Tran Manh Tuan, Le Hoang Son
{"title":"ViMedNER:越南语医疗命名实体识别数据集","authors":"Pham Van Duong, T. Trinh, Minh-Tien Nguyen, Huy-The Vu, Minh Chuan Pham, Tran Manh Tuan, Le Hoang Son","doi":"10.4108/eetinis.v11i3.5221","DOIUrl":null,"url":null,"abstract":"Named entity recognition (NER) is one of the most important tasks in natural language processing, which identifies entity boundaries and classifies them into pre-defined categories. In literature, NER systems have been developed for various languages but limited works have been conducted for Vietnamese. This mainly comes from the limitation of available and high-quality annotated data, especially for specific domains such as medicine and healthcare. In this paper, we introduce a new medical NER dataset, named ViMedNER, for recognizing Vietnamese medical entities. Unlike existing works designed for common or too-specific entities, we focus on entity types that can be used in common diagnostic and treatment scenarios, including disease names, the symptoms of the diseases, the cause of the diseases, the diagnostic, and the treatment. These entities facilitate the diagnosis and treatment of doctors for common diseases. Our dataset is collected from four well-known Vietnamese websites that are professional in terms of drag selling and disease diagnostics and annotated by domain experts with high agreement scores. To create benchmark results, strong NER baselines based on pre-trained language models including PhoBERT, XLM-R, ViDeBERTa, ViPubMedDeBERTa, and ViHealthBERT are implemented and evaluated on the dataset. Experiment results show that the performance of XLM-R is consistently better than that of the other pre-trained language models. Furthermore, additional experiments are conducted to explore the behavior of the baselines and the characteristics of our dataset.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":"140 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViMedNER: A Medical Named Entity Recognition Dataset for Vietnamese\",\"authors\":\"Pham Van Duong, T. Trinh, Minh-Tien Nguyen, Huy-The Vu, Minh Chuan Pham, Tran Manh Tuan, Le Hoang Son\",\"doi\":\"10.4108/eetinis.v11i3.5221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named entity recognition (NER) is one of the most important tasks in natural language processing, which identifies entity boundaries and classifies them into pre-defined categories. In literature, NER systems have been developed for various languages but limited works have been conducted for Vietnamese. This mainly comes from the limitation of available and high-quality annotated data, especially for specific domains such as medicine and healthcare. In this paper, we introduce a new medical NER dataset, named ViMedNER, for recognizing Vietnamese medical entities. Unlike existing works designed for common or too-specific entities, we focus on entity types that can be used in common diagnostic and treatment scenarios, including disease names, the symptoms of the diseases, the cause of the diseases, the diagnostic, and the treatment. These entities facilitate the diagnosis and treatment of doctors for common diseases. Our dataset is collected from four well-known Vietnamese websites that are professional in terms of drag selling and disease diagnostics and annotated by domain experts with high agreement scores. To create benchmark results, strong NER baselines based on pre-trained language models including PhoBERT, XLM-R, ViDeBERTa, ViPubMedDeBERTa, and ViHealthBERT are implemented and evaluated on the dataset. Experiment results show that the performance of XLM-R is consistently better than that of the other pre-trained language models. Furthermore, additional experiments are conducted to explore the behavior of the baselines and the characteristics of our dataset.\",\"PeriodicalId\":33474,\"journal\":{\"name\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"volume\":\"140 49\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetinis.v11i3.5221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetinis.v11i3.5221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

命名实体识别(NER)是自然语言处理中最重要的任务之一,它能识别实体边界并将其归入预定义的类别。在文献中,NER 系统已针对多种语言进行了开发,但针对越南语的工作还很有限。这主要是由于可用的高质量注释数据有限,尤其是在医学和医疗保健等特定领域。在本文中,我们介绍了一个新的医疗 NER 数据集,名为 ViMedNER,用于识别越南语医疗实体。与针对常见或过于特殊的实体设计的现有作品不同,我们专注于可用于常见诊断和治疗场景的实体类型,包括疾病名称、疾病症状、病因、诊断和治疗。这些实体有助于医生对常见疾病进行诊断和治疗。我们的数据集收集自四个知名的越南网站,这些网站在拖动销售和疾病诊断方面都很专业,并由领域专家注释,具有较高的一致性得分。为了创建基准结果,我们基于预先训练的语言模型(包括 PhoBERT、XLM-R、ViDeBERTa、ViPubMedDeBERTa 和 ViHealthBERT)实现了强大的 NER 基线,并在数据集上进行了评估。实验结果表明,XLM-R 的性能始终优于其他预训练语言模型。此外,我们还进行了其他实验,以探索基线的行为和我们数据集的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViMedNER: A Medical Named Entity Recognition Dataset for Vietnamese
Named entity recognition (NER) is one of the most important tasks in natural language processing, which identifies entity boundaries and classifies them into pre-defined categories. In literature, NER systems have been developed for various languages but limited works have been conducted for Vietnamese. This mainly comes from the limitation of available and high-quality annotated data, especially for specific domains such as medicine and healthcare. In this paper, we introduce a new medical NER dataset, named ViMedNER, for recognizing Vietnamese medical entities. Unlike existing works designed for common or too-specific entities, we focus on entity types that can be used in common diagnostic and treatment scenarios, including disease names, the symptoms of the diseases, the cause of the diseases, the diagnostic, and the treatment. These entities facilitate the diagnosis and treatment of doctors for common diseases. Our dataset is collected from four well-known Vietnamese websites that are professional in terms of drag selling and disease diagnostics and annotated by domain experts with high agreement scores. To create benchmark results, strong NER baselines based on pre-trained language models including PhoBERT, XLM-R, ViDeBERTa, ViPubMedDeBERTa, and ViHealthBERT are implemented and evaluated on the dataset. Experiment results show that the performance of XLM-R is consistently better than that of the other pre-trained language models. Furthermore, additional experiments are conducted to explore the behavior of the baselines and the characteristics of our dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
15
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信