积分方程:通过广义最佳邻近方法获得新解

Axioms Pub Date : 2024-07-11 DOI:10.3390/axioms13070467
A. H. Albargi, Jamshaid Ahmad
{"title":"积分方程:通过广义最佳邻近方法获得新解","authors":"A. H. Albargi, Jamshaid Ahmad","doi":"10.3390/axioms13070467","DOIUrl":null,"url":null,"abstract":"This paper introduces the concept of proximal (α,F)-contractions in F-metric spaces. We establish novel results concerning the existence and uniqueness of best proximity points for such mappings. The validity of our findings is corroborated through a non-trivial example. Furthermore, we demonstrate the applicability of these results by proving the existence of solutions for Volterra integral equations related to population growth models. This approach not only extends best proximity theory, but also paves the way for further research in applied mathematics and beyond.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"140 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral Equations: New Solutions via Generalized Best Proximity Methods\",\"authors\":\"A. H. Albargi, Jamshaid Ahmad\",\"doi\":\"10.3390/axioms13070467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the concept of proximal (α,F)-contractions in F-metric spaces. We establish novel results concerning the existence and uniqueness of best proximity points for such mappings. The validity of our findings is corroborated through a non-trivial example. Furthermore, we demonstrate the applicability of these results by proving the existence of solutions for Volterra integral equations related to population growth models. This approach not only extends best proximity theory, but also paves the way for further research in applied mathematics and beyond.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"140 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 F-度量空间中的近似 (α,F)-contractions 概念。我们建立了关于此类映射的最佳临近点的存在性和唯一性的新结果。我们通过一个非难例证证实了我们发现的有效性。此外,我们还通过证明与人口增长模型相关的 Volterra 积分方程的解的存在性,证明了这些结果的适用性。这种方法不仅扩展了最佳邻近理论,还为应用数学及其他领域的进一步研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral Equations: New Solutions via Generalized Best Proximity Methods
This paper introduces the concept of proximal (α,F)-contractions in F-metric spaces. We establish novel results concerning the existence and uniqueness of best proximity points for such mappings. The validity of our findings is corroborated through a non-trivial example. Furthermore, we demonstrate the applicability of these results by proving the existence of solutions for Volterra integral equations related to population growth models. This approach not only extends best proximity theory, but also paves the way for further research in applied mathematics and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信