声冲击波在酒石酸咪唑鎓晶体中引发的可逆光致发光转变

Madhavan Natarajan, Sivaprakash Paramasivam, Ikhyun Kim, Martin Britto Dhas Sathiyadhas Amalapushpam
{"title":"声冲击波在酒石酸咪唑鎓晶体中引发的可逆光致发光转变","authors":"Madhavan Natarajan, Sivaprakash Paramasivam, Ikhyun Kim, Martin Britto Dhas Sathiyadhas Amalapushpam","doi":"10.1515/zpch-2024-0624","DOIUrl":null,"url":null,"abstract":"\n Imidazolium l-tartrate crystal has been grown by employing the slow evaporation technique using de-ionized water as the solvent. An impact study on the exposure of shock pulses on the surface of the material has been carried out and the influence of shock waves on its photo luminance has been investigated. In the present work, in order to carry out the experiment, a shock wave of Mach number 1.5 has been utilized which has been generated by a semi-automated Reddy Tube. Imidazolium tartrate crystal is made into a fine powder and split into four identical parts to be used for further characterization. A series of shock waves such as 25, 50, and 75 are impacted on the respective samples while keeping one of the samples as the control. The powder X-ray diffraction analysis reveals that the observed increase in peak intensity and peak shifting is due to the increase in the number of shock pulses from 25 to 75. FTIR is performed to analyze the presence of functional groups in the material before and after shock exposure. Photoluminescence measurements are also carried out for the pre- and post-shocked samples to determine the nature of optical emission with respect to various shock pulse counts. The above experimental analyzes confirm that the title sample undergoes a reversible photoluminescence shift induced by shock waves.","PeriodicalId":506520,"journal":{"name":"Zeitschrift für Physikalische Chemie","volume":"12 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves\",\"authors\":\"Madhavan Natarajan, Sivaprakash Paramasivam, Ikhyun Kim, Martin Britto Dhas Sathiyadhas Amalapushpam\",\"doi\":\"10.1515/zpch-2024-0624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Imidazolium l-tartrate crystal has been grown by employing the slow evaporation technique using de-ionized water as the solvent. An impact study on the exposure of shock pulses on the surface of the material has been carried out and the influence of shock waves on its photo luminance has been investigated. In the present work, in order to carry out the experiment, a shock wave of Mach number 1.5 has been utilized which has been generated by a semi-automated Reddy Tube. Imidazolium tartrate crystal is made into a fine powder and split into four identical parts to be used for further characterization. A series of shock waves such as 25, 50, and 75 are impacted on the respective samples while keeping one of the samples as the control. The powder X-ray diffraction analysis reveals that the observed increase in peak intensity and peak shifting is due to the increase in the number of shock pulses from 25 to 75. FTIR is performed to analyze the presence of functional groups in the material before and after shock exposure. Photoluminescence measurements are also carried out for the pre- and post-shocked samples to determine the nature of optical emission with respect to various shock pulse counts. The above experimental analyzes confirm that the title sample undergoes a reversible photoluminescence shift induced by shock waves.\",\"PeriodicalId\":506520,\"journal\":{\"name\":\"Zeitschrift für Physikalische Chemie\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Physikalische Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zpch-2024-0624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zpch-2024-0624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

酒石酸咪唑鎓晶体是以去离子水为溶剂,利用缓慢蒸发技术生长出来的。研究人员对冲击脉冲对材料表面的影响进行了研究,并调查了冲击波对其光亮度的影响。在本研究中,为了进行实验,使用了由半自动雷迪管产生的马赫数为 1.5 的冲击波。酒石酸咪唑鎓晶体被制成细粉,并分成四个相同的部分,用于进一步表征。一系列冲击波,如 25、50 和 75 波,分别冲击各样品,同时保留其中一个样品作为对照。粉末 X 射线衍射分析表明,观察到的峰值强度增加和峰值移动是由于冲击脉冲数从 25 到 75 的增加所致。傅立叶变换红外光谱用于分析冲击暴露前后材料中存在的官能团。此外,还对冲击前后的样品进行了光致发光测量,以确定不同冲击脉冲数下光发射的性质。上述实验分析证实,标题样品在冲击波的诱导下发生了可逆的光致发光转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves
Imidazolium l-tartrate crystal has been grown by employing the slow evaporation technique using de-ionized water as the solvent. An impact study on the exposure of shock pulses on the surface of the material has been carried out and the influence of shock waves on its photo luminance has been investigated. In the present work, in order to carry out the experiment, a shock wave of Mach number 1.5 has been utilized which has been generated by a semi-automated Reddy Tube. Imidazolium tartrate crystal is made into a fine powder and split into four identical parts to be used for further characterization. A series of shock waves such as 25, 50, and 75 are impacted on the respective samples while keeping one of the samples as the control. The powder X-ray diffraction analysis reveals that the observed increase in peak intensity and peak shifting is due to the increase in the number of shock pulses from 25 to 75. FTIR is performed to analyze the presence of functional groups in the material before and after shock exposure. Photoluminescence measurements are also carried out for the pre- and post-shocked samples to determine the nature of optical emission with respect to various shock pulse counts. The above experimental analyzes confirm that the title sample undergoes a reversible photoluminescence shift induced by shock waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信