罗氏代数连续场示例

Axioms Pub Date : 2024-07-12 DOI:10.3390/axioms13070470
V. Manuilov
{"title":"罗氏代数连续场示例","authors":"V. Manuilov","doi":"10.3390/axioms13070470","DOIUrl":null,"url":null,"abstract":"The Roe algebra C*(X) is a noncommutative C*-algebra reflecting metric properties of a space X, and it is interesting to understand the correlation between the Roe algebra of X and the (uniform) Roe algebra of its discretization. Here, we perform a minor step in this direction in the simplest non-trivial example, namely X=R, by constructing a continuous field of C*-algebras over [0,1], with the fibers over non-zero points constituting the uniform C*-algebra of the integers, and the fibers over 0 constituting a C*-algebra related to R.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"62 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Example of a Continuous Field of Roe Algebras\",\"authors\":\"V. Manuilov\",\"doi\":\"10.3390/axioms13070470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Roe algebra C*(X) is a noncommutative C*-algebra reflecting metric properties of a space X, and it is interesting to understand the correlation between the Roe algebra of X and the (uniform) Roe algebra of its discretization. Here, we perform a minor step in this direction in the simplest non-trivial example, namely X=R, by constructing a continuous field of C*-algebras over [0,1], with the fibers over non-zero points constituting the uniform C*-algebra of the integers, and the fibers over 0 constituting a C*-algebra related to R.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"62 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

罗厄代数 C*(X) 是反映空间 X 度量性质的非交换 C* 代数,了解 X 的罗厄代数与其离散化的(均匀)罗厄代数之间的关联是很有趣的。在此,我们在最简单的非微分例子(即 X=R)中朝着这个方向迈出了一小步,构建了一个[0,1]上的连续 C* 代数场,其中非零点上的纤维构成整数的均匀 C* 代数,而 0 上的纤维构成与 R 相关的 C* 代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Example of a Continuous Field of Roe Algebras
The Roe algebra C*(X) is a noncommutative C*-algebra reflecting metric properties of a space X, and it is interesting to understand the correlation between the Roe algebra of X and the (uniform) Roe algebra of its discretization. Here, we perform a minor step in this direction in the simplest non-trivial example, namely X=R, by constructing a continuous field of C*-algebras over [0,1], with the fibers over non-zero points constituting the uniform C*-algebra of the integers, and the fibers over 0 constituting a C*-algebra related to R.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信