图行走自动机布尔运算的状态复杂性

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
O. Martynova, Alexander Okhotin
{"title":"图行走自动机布尔运算的状态复杂性","authors":"O. Martynova, Alexander Okhotin","doi":"10.1142/s0129054124420012","DOIUrl":null,"url":null,"abstract":"Finite automata that traverse graphs by moving along their edges are known as graph-walking automata (GWA). This paper investigates the state complexity of Boolean operations for this model. It is proved that the union of GWA with [Formula: see text] and [Formula: see text] states, with [Formula: see text], operating on graphs with [Formula: see text] labels of edge end-points, is representable by a GWA with [Formula: see text] states, and at least [Formula: see text] states are necessary in the worst case. For the intersection, the upper bound is [Formula: see text] and the lower bound is [Formula: see text]. The upper bound for the complementation is [Formula: see text], and the lower bound is [Formula: see text].","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Complexity of Boolean Operations on Graph-Walking Automata\",\"authors\":\"O. Martynova, Alexander Okhotin\",\"doi\":\"10.1142/s0129054124420012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite automata that traverse graphs by moving along their edges are known as graph-walking automata (GWA). This paper investigates the state complexity of Boolean operations for this model. It is proved that the union of GWA with [Formula: see text] and [Formula: see text] states, with [Formula: see text], operating on graphs with [Formula: see text] labels of edge end-points, is representable by a GWA with [Formula: see text] states, and at least [Formula: see text] states are necessary in the worst case. For the intersection, the upper bound is [Formula: see text] and the lower bound is [Formula: see text]. The upper bound for the complementation is [Formula: see text], and the lower bound is [Formula: see text].\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054124420012\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054124420012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

通过沿图边移动来遍历图的有限自动机被称为图行走自动机(GWA)。本文研究了该模型布尔运算的状态复杂性。结果证明,具有[公式:见正文]和[公式:见正文]状态的 GWA 的联合,在具有[公式:见正文]边端点标签的图上操作时,可以用具有[公式:见正文]状态的 GWA 表示,而且在最坏情况下至少需要[公式:见正文]个状态。对于交集,上界为[公式:见正文],下界为[公式:见正文]。补码的上界是[公式:见正文],下界是[公式:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Complexity of Boolean Operations on Graph-Walking Automata
Finite automata that traverse graphs by moving along their edges are known as graph-walking automata (GWA). This paper investigates the state complexity of Boolean operations for this model. It is proved that the union of GWA with [Formula: see text] and [Formula: see text] states, with [Formula: see text], operating on graphs with [Formula: see text] labels of edge end-points, is representable by a GWA with [Formula: see text] states, and at least [Formula: see text] states are necessary in the worst case. For the intersection, the upper bound is [Formula: see text] and the lower bound is [Formula: see text]. The upper bound for the complementation is [Formula: see text], and the lower bound is [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信