{"title":"图行走自动机布尔运算的状态复杂性","authors":"O. Martynova, Alexander Okhotin","doi":"10.1142/s0129054124420012","DOIUrl":null,"url":null,"abstract":"Finite automata that traverse graphs by moving along their edges are known as graph-walking automata (GWA). This paper investigates the state complexity of Boolean operations for this model. It is proved that the union of GWA with [Formula: see text] and [Formula: see text] states, with [Formula: see text], operating on graphs with [Formula: see text] labels of edge end-points, is representable by a GWA with [Formula: see text] states, and at least [Formula: see text] states are necessary in the worst case. For the intersection, the upper bound is [Formula: see text] and the lower bound is [Formula: see text]. The upper bound for the complementation is [Formula: see text], and the lower bound is [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":"59 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Complexity of Boolean Operations on Graph-Walking Automata\",\"authors\":\"O. Martynova, Alexander Okhotin\",\"doi\":\"10.1142/s0129054124420012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite automata that traverse graphs by moving along their edges are known as graph-walking automata (GWA). This paper investigates the state complexity of Boolean operations for this model. It is proved that the union of GWA with [Formula: see text] and [Formula: see text] states, with [Formula: see text], operating on graphs with [Formula: see text] labels of edge end-points, is representable by a GWA with [Formula: see text] states, and at least [Formula: see text] states are necessary in the worst case. For the intersection, the upper bound is [Formula: see text] and the lower bound is [Formula: see text]. The upper bound for the complementation is [Formula: see text], and the lower bound is [Formula: see text].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"59 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054124420012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054124420012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
State Complexity of Boolean Operations on Graph-Walking Automata
Finite automata that traverse graphs by moving along their edges are known as graph-walking automata (GWA). This paper investigates the state complexity of Boolean operations for this model. It is proved that the union of GWA with [Formula: see text] and [Formula: see text] states, with [Formula: see text], operating on graphs with [Formula: see text] labels of edge end-points, is representable by a GWA with [Formula: see text] states, and at least [Formula: see text] states are necessary in the worst case. For the intersection, the upper bound is [Formula: see text] and the lower bound is [Formula: see text]. The upper bound for the complementation is [Formula: see text], and the lower bound is [Formula: see text].