多期分数阶弗雷德霍尔姆积分微分方程解的存在性

Dahiru Umar, S. L. Bichi
{"title":"多期分数阶弗雷德霍尔姆积分微分方程解的存在性","authors":"Dahiru Umar, S. L. Bichi","doi":"10.58715/bangmodjmcs.2024.10.3","DOIUrl":null,"url":null,"abstract":"This paper considered a multi-term fractional order Fredholm integro-differential equation. The multi-term fractional order Fredholm integro-differential equation was transformed into its corresponding integral equation form with the help of Riemann-Liouville fractional integral by which, Schauder’s fixed point theorem is utilised in the study and establishing the existence of solution for the multi-term fractional order Fredholm integro-differential equation. Moreover, some examples were considered to prove the claim of the established existence of solution theorem. ","PeriodicalId":427036,"journal":{"name":"Bangmod International Journal of Mathematical and Computational Science","volume":"58 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXISTENCE OF SOLUTION OF MULTI-TERM FRACTIONAL ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATION\",\"authors\":\"Dahiru Umar, S. L. Bichi\",\"doi\":\"10.58715/bangmodjmcs.2024.10.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considered a multi-term fractional order Fredholm integro-differential equation. The multi-term fractional order Fredholm integro-differential equation was transformed into its corresponding integral equation form with the help of Riemann-Liouville fractional integral by which, Schauder’s fixed point theorem is utilised in the study and establishing the existence of solution for the multi-term fractional order Fredholm integro-differential equation. Moreover, some examples were considered to prove the claim of the established existence of solution theorem. \",\"PeriodicalId\":427036,\"journal\":{\"name\":\"Bangmod International Journal of Mathematical and Computational Science\",\"volume\":\"58 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bangmod International Journal of Mathematical and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58715/bangmodjmcs.2024.10.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bangmod International Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58715/bangmodjmcs.2024.10.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了多期分数阶弗雷德霍姆积分微分方程。借助黎曼-李欧维尔分式积分,将多期分式阶弗雷德霍姆积分微分方程转化为相应的积分方程形式,并在研究中利用了 Schauder 定点定理,建立了多期分式阶弗雷德霍姆积分微分方程的存在解。此外,还考虑了一些实例来证明所建立的解存在定理的主张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXISTENCE OF SOLUTION OF MULTI-TERM FRACTIONAL ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
This paper considered a multi-term fractional order Fredholm integro-differential equation. The multi-term fractional order Fredholm integro-differential equation was transformed into its corresponding integral equation form with the help of Riemann-Liouville fractional integral by which, Schauder’s fixed point theorem is utilised in the study and establishing the existence of solution for the multi-term fractional order Fredholm integro-differential equation. Moreover, some examples were considered to prove the claim of the established existence of solution theorem. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信