论有限群的 ICΦ 子群和 p-hypercyclically embedded 结构

Jia Zhang, Xiao Huang, Yanhui Xiang
{"title":"论有限群的 ICΦ 子群和 p-hypercyclically embedded 结构","authors":"Jia Zhang, Xiao Huang, Yanhui Xiang","doi":"10.1142/s0219498825503062","DOIUrl":null,"url":null,"abstract":"A subgroup [Formula: see text] of a group [Formula: see text] is said to be an [Formula: see text]-subgroup of [Formula: see text] if [Formula: see text]. In this paper, based on research work of Kaspczyk, we analyze [Formula: see text]-hypercyclically embedded structure of a finite group [Formula: see text] under the assumption that some given [Formula: see text]-subgroups of [Formula: see text] are [Formula: see text]-subgroups of [Formula: see text]. Also, all [Formula: see text]-subgroups of symmetric group [Formula: see text] are determined.","PeriodicalId":508127,"journal":{"name":"Journal of Algebra and Its Applications","volume":"9 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On ICΦ-subgroups and p-hypercyclically embedded structure of finite groups\",\"authors\":\"Jia Zhang, Xiao Huang, Yanhui Xiang\",\"doi\":\"10.1142/s0219498825503062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subgroup [Formula: see text] of a group [Formula: see text] is said to be an [Formula: see text]-subgroup of [Formula: see text] if [Formula: see text]. In this paper, based on research work of Kaspczyk, we analyze [Formula: see text]-hypercyclically embedded structure of a finite group [Formula: see text] under the assumption that some given [Formula: see text]-subgroups of [Formula: see text] are [Formula: see text]-subgroups of [Formula: see text]. Also, all [Formula: see text]-subgroups of symmetric group [Formula: see text] are determined.\",\"PeriodicalId\":508127,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":\"9 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825503062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825503062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果[公式:见正文]是一个群[公式:见正文]的[公式:见正文]子群,那么这个[公式:见正文]子群就是[公式:见正文]的[公式:见正文]子群。本文以 Kaspczyk 的研究工作为基础,分析了有限群[式:见文本]的[式:见文本]-超循环嵌入结构,其假设是[式:见文本]的某些给定[式:见文本]-子群是[式:见文本]的[式:见文本]-子群。同时,对称群[式:见文字]的所有[式:见文字]-子群也被确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On ICΦ-subgroups and p-hypercyclically embedded structure of finite groups
A subgroup [Formula: see text] of a group [Formula: see text] is said to be an [Formula: see text]-subgroup of [Formula: see text] if [Formula: see text]. In this paper, based on research work of Kaspczyk, we analyze [Formula: see text]-hypercyclically embedded structure of a finite group [Formula: see text] under the assumption that some given [Formula: see text]-subgroups of [Formula: see text] are [Formula: see text]-subgroups of [Formula: see text]. Also, all [Formula: see text]-subgroups of symmetric group [Formula: see text] are determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信