Núria Folguera-Blasco, Florencia A. T. Boshier, Aydar Uatay, C. Pichardo-Almarza, Massimo Lai, Jacopo Biasetti, Richard Dearden, Megan Gibbs, Holly Kimko
{"title":"将定量系统药理学建模与机器学习和人工智能相结合,促进药物开发:其 pAIns 和 gAIns","authors":"Núria Folguera-Blasco, Florencia A. T. Boshier, Aydar Uatay, C. Pichardo-Almarza, Massimo Lai, Jacopo Biasetti, Richard Dearden, Megan Gibbs, Holly Kimko","doi":"10.3389/fsysb.2024.1380685","DOIUrl":null,"url":null,"abstract":"Quantitative Systems Pharmacology (QSP) has become a powerful tool in the drug development landscape. To facilitate its continued implementation and to further enhance its applicability, a symbiotic approach in which QSP is combined with artificial intelligence (AI) and machine learning (ML) seems key. This manuscript presents four case examples where the application of a symbiotic approach could unlock new insights from multidimensional data, including real-world data, potentially leading to breakthroughs in drug development. Besides the remarkable benefits (gAIns) that the symbiosis can offer, it does also carry potential challenges (pAIns) such as how to assess and quantify uncertainty, bias and error. Hence, to ensure a successful implementation, arising pAIns need to be acknowledged and carefully addressed. Successful implementation of the symbiotic QSP and ML/AI approach has the potential to serve as a catalyst, paving the way for a paradigm shift in drug development.","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":"37 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling quantitative systems pharmacology modelling to machine learning and artificial intelligence for drug development: its pAIns and gAIns\",\"authors\":\"Núria Folguera-Blasco, Florencia A. T. Boshier, Aydar Uatay, C. Pichardo-Almarza, Massimo Lai, Jacopo Biasetti, Richard Dearden, Megan Gibbs, Holly Kimko\",\"doi\":\"10.3389/fsysb.2024.1380685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantitative Systems Pharmacology (QSP) has become a powerful tool in the drug development landscape. To facilitate its continued implementation and to further enhance its applicability, a symbiotic approach in which QSP is combined with artificial intelligence (AI) and machine learning (ML) seems key. This manuscript presents four case examples where the application of a symbiotic approach could unlock new insights from multidimensional data, including real-world data, potentially leading to breakthroughs in drug development. Besides the remarkable benefits (gAIns) that the symbiosis can offer, it does also carry potential challenges (pAIns) such as how to assess and quantify uncertainty, bias and error. Hence, to ensure a successful implementation, arising pAIns need to be acknowledged and carefully addressed. Successful implementation of the symbiotic QSP and ML/AI approach has the potential to serve as a catalyst, paving the way for a paradigm shift in drug development.\",\"PeriodicalId\":73109,\"journal\":{\"name\":\"Frontiers in systems biology\",\"volume\":\"37 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsysb.2024.1380685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2024.1380685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coupling quantitative systems pharmacology modelling to machine learning and artificial intelligence for drug development: its pAIns and gAIns
Quantitative Systems Pharmacology (QSP) has become a powerful tool in the drug development landscape. To facilitate its continued implementation and to further enhance its applicability, a symbiotic approach in which QSP is combined with artificial intelligence (AI) and machine learning (ML) seems key. This manuscript presents four case examples where the application of a symbiotic approach could unlock new insights from multidimensional data, including real-world data, potentially leading to breakthroughs in drug development. Besides the remarkable benefits (gAIns) that the symbiosis can offer, it does also carry potential challenges (pAIns) such as how to assess and quantify uncertainty, bias and error. Hence, to ensure a successful implementation, arising pAIns need to be acknowledged and carefully addressed. Successful implementation of the symbiotic QSP and ML/AI approach has the potential to serve as a catalyst, paving the way for a paradigm shift in drug development.