Tianyu Zheng, Chao Xu, Zhengping Li, Chao Nie, Rubin Xu, Minpeng Jiang, Leilei Li
{"title":"BFT-Net:用于肾脏肿瘤分割的基于变压器的边界反馈网络","authors":"Tianyu Zheng, Chao Xu, Zhengping Li, Chao Nie, Rubin Xu, Minpeng Jiang, Leilei Li","doi":"10.1049/cmu2.12802","DOIUrl":null,"url":null,"abstract":"<p>Kidney tumours are among the top ten most common tumours, the automatic segmentation of medical images can help locate tumour locations. However, the segmentation of kidney tumour images still faces several challenges: firstly, there is a lack of renal tumour endoscopic datasets and no segmentation techniques for renal tumour endoscopic images; secondly, the intra-class inconsistency of tumours caused by variations in size, location, and shape of renal tumours; thirdly, difficulty in semantic fusion during decoding; and finally, the issue of boundary blurring in the localization of lesions. To address the aforementioned issues, a new dataset called Re-TMRS is proposed, and for this dataset, the transformer-based boundary feedback network for kidney tumour segmentation (BFT-Net) is proposed. This network incorporates an adaptive context extract module (ACE) to emphasize local contextual information, reduces the semantic gap through the mixed feature capture module (MFC), and ultimately improves boundary extraction capability through end-to-end optimization learning in the boundary assist module (BA). Through numerous experiments, it is demonstrated that the proposed model exhibits excellent segmentation ability and generalization performance. The mDice and mIoU on the Re-TMRS dataset reach 91.1% and 91.8%, respectively.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 16","pages":"966-977"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12802","citationCount":"0","resultStr":"{\"title\":\"BFT-Net: A transformer-based boundary feedback network for kidney tumour segmentation\",\"authors\":\"Tianyu Zheng, Chao Xu, Zhengping Li, Chao Nie, Rubin Xu, Minpeng Jiang, Leilei Li\",\"doi\":\"10.1049/cmu2.12802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kidney tumours are among the top ten most common tumours, the automatic segmentation of medical images can help locate tumour locations. However, the segmentation of kidney tumour images still faces several challenges: firstly, there is a lack of renal tumour endoscopic datasets and no segmentation techniques for renal tumour endoscopic images; secondly, the intra-class inconsistency of tumours caused by variations in size, location, and shape of renal tumours; thirdly, difficulty in semantic fusion during decoding; and finally, the issue of boundary blurring in the localization of lesions. To address the aforementioned issues, a new dataset called Re-TMRS is proposed, and for this dataset, the transformer-based boundary feedback network for kidney tumour segmentation (BFT-Net) is proposed. This network incorporates an adaptive context extract module (ACE) to emphasize local contextual information, reduces the semantic gap through the mixed feature capture module (MFC), and ultimately improves boundary extraction capability through end-to-end optimization learning in the boundary assist module (BA). Through numerous experiments, it is demonstrated that the proposed model exhibits excellent segmentation ability and generalization performance. The mDice and mIoU on the Re-TMRS dataset reach 91.1% and 91.8%, respectively.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"18 16\",\"pages\":\"966-977\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12802\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12802\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12802","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
BFT-Net: A transformer-based boundary feedback network for kidney tumour segmentation
Kidney tumours are among the top ten most common tumours, the automatic segmentation of medical images can help locate tumour locations. However, the segmentation of kidney tumour images still faces several challenges: firstly, there is a lack of renal tumour endoscopic datasets and no segmentation techniques for renal tumour endoscopic images; secondly, the intra-class inconsistency of tumours caused by variations in size, location, and shape of renal tumours; thirdly, difficulty in semantic fusion during decoding; and finally, the issue of boundary blurring in the localization of lesions. To address the aforementioned issues, a new dataset called Re-TMRS is proposed, and for this dataset, the transformer-based boundary feedback network for kidney tumour segmentation (BFT-Net) is proposed. This network incorporates an adaptive context extract module (ACE) to emphasize local contextual information, reduces the semantic gap through the mixed feature capture module (MFC), and ultimately improves boundary extraction capability through end-to-end optimization learning in the boundary assist module (BA). Through numerous experiments, it is demonstrated that the proposed model exhibits excellent segmentation ability and generalization performance. The mDice and mIoU on the Re-TMRS dataset reach 91.1% and 91.8%, respectively.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf