最长波浪后继问题:最长递增后继问题的一般化

Pub Date : 2024-07-12 DOI:10.1142/s012905412450014x
Guan-Zhi Chen, Chang-Biau Yang, Yu-Cheng Chang
{"title":"最长波浪后继问题:最长递增后继问题的一般化","authors":"Guan-Zhi Chen, Chang-Biau Yang, Yu-Cheng Chang","doi":"10.1142/s012905412450014x","DOIUrl":null,"url":null,"abstract":"The longest increasing subsequence (LIS) problem aims to find the subsequence exhibiting an increasing trend in a numeric sequence with the maximum length. In this paper, we generalize the LIS problem to the longest wave subsequence (LWS) problem, which encompasses two versions: LWSt and LWSr. Given a numeric sequence [Formula: see text] of distinct values and a target trend sequence [Formula: see text], the LWSt problem aims to identify the longest subsequence of [Formula: see text] that preserves the trend of the prefix of [Formula: see text]. And, the LWSr problem aims to find the longest subsequence of [Formula: see text] within [Formula: see text] segments, alternating increasing and decreasing subsequences. We propose two efficient algorithms for solving the two versions of the LWS problem. For the LWSt problem, the time complexity of our algorithm is O[Formula: see text], where [Formula: see text] represents the length of the given numeric sequence [Formula: see text]. Additionally, we propose an O[Formula: see text]-time algorithm for solving the LWSr problem. In both algorithms, we utilize the priority queues for the insertion, deletion, and successor operations.","PeriodicalId":0,"journal":{"name":"","volume":"26 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Longest Wave Subsequence Problem: Generalizations of the Longest Increasing Subsequence Problem\",\"authors\":\"Guan-Zhi Chen, Chang-Biau Yang, Yu-Cheng Chang\",\"doi\":\"10.1142/s012905412450014x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The longest increasing subsequence (LIS) problem aims to find the subsequence exhibiting an increasing trend in a numeric sequence with the maximum length. In this paper, we generalize the LIS problem to the longest wave subsequence (LWS) problem, which encompasses two versions: LWSt and LWSr. Given a numeric sequence [Formula: see text] of distinct values and a target trend sequence [Formula: see text], the LWSt problem aims to identify the longest subsequence of [Formula: see text] that preserves the trend of the prefix of [Formula: see text]. And, the LWSr problem aims to find the longest subsequence of [Formula: see text] within [Formula: see text] segments, alternating increasing and decreasing subsequences. We propose two efficient algorithms for solving the two versions of the LWS problem. For the LWSt problem, the time complexity of our algorithm is O[Formula: see text], where [Formula: see text] represents the length of the given numeric sequence [Formula: see text]. Additionally, we propose an O[Formula: see text]-time algorithm for solving the LWSr problem. In both algorithms, we utilize the priority queues for the insertion, deletion, and successor operations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s012905412450014x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s012905412450014x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最长递增子序列(LIS)问题旨在找出数字序列中长度最大且呈现递增趋势的子序列。在本文中,我们将 LIS 问题推广为最长波浪子序列(LWS)问题,它包括两个版本:LWSt 和 LWSr:给定一个由不同数值组成的数字序列[公式:见正文]和一个目标趋势序列[公式:见正文],LWSt 问题旨在找出[公式:见正文]中保持[公式:见正文]前缀趋势的最长子序列。而 LWSr 问题旨在找出[公式:见正文]段内[公式:见正文]的最长子序列,交替使用递增和递减子序列。我们提出了两种高效算法来解决这两个版本的 LWS 问题。对于 LWSt 问题,我们算法的时间复杂度为 O[公式:见正文],其中[公式:见正文]表示给定数字序列[公式:见正文]的长度。此外,我们还提出了解决 LWSr 问题的 O[式:见正文]时间算法。在这两种算法中,我们利用优先队列进行插入、删除和继承操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Longest Wave Subsequence Problem: Generalizations of the Longest Increasing Subsequence Problem
The longest increasing subsequence (LIS) problem aims to find the subsequence exhibiting an increasing trend in a numeric sequence with the maximum length. In this paper, we generalize the LIS problem to the longest wave subsequence (LWS) problem, which encompasses two versions: LWSt and LWSr. Given a numeric sequence [Formula: see text] of distinct values and a target trend sequence [Formula: see text], the LWSt problem aims to identify the longest subsequence of [Formula: see text] that preserves the trend of the prefix of [Formula: see text]. And, the LWSr problem aims to find the longest subsequence of [Formula: see text] within [Formula: see text] segments, alternating increasing and decreasing subsequences. We propose two efficient algorithms for solving the two versions of the LWS problem. For the LWSt problem, the time complexity of our algorithm is O[Formula: see text], where [Formula: see text] represents the length of the given numeric sequence [Formula: see text]. Additionally, we propose an O[Formula: see text]-time algorithm for solving the LWSr problem. In both algorithms, we utilize the priority queues for the insertion, deletion, and successor operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信