卡普托导数下偏中性函数分微分方程的存在性和唯一性研究

N. Sene, A. Ndiaye
{"title":"卡普托导数下偏中性函数分微分方程的存在性和唯一性研究","authors":"N. Sene, A. Ndiaye","doi":"10.11121/ijocta.1464","DOIUrl":null,"url":null,"abstract":"The partial neutral functional fractional differential equation described by the fractional operator is considered in the present investigation. The used fractional operator is the Caputo derivative. In the present paper, the fractional resolvent operators have been defined and used to prove the existence of the unique solution of the fractional neutral differential equations. The fixed point theorem has been used in existence investigations. For an illustration of our results in this paper, an example has been provided as well.","PeriodicalId":505378,"journal":{"name":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","volume":"62 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness study for partial neutral functional fractional differential equation under Caputo derivative\",\"authors\":\"N. Sene, A. Ndiaye\",\"doi\":\"10.11121/ijocta.1464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The partial neutral functional fractional differential equation described by the fractional operator is considered in the present investigation. The used fractional operator is the Caputo derivative. In the present paper, the fractional resolvent operators have been defined and used to prove the existence of the unique solution of the fractional neutral differential equations. The fixed point theorem has been used in existence investigations. For an illustration of our results in this paper, an example has been provided as well.\",\"PeriodicalId\":505378,\"journal\":{\"name\":\"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)\",\"volume\":\"62 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.1464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.1464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究考虑的是由分数算子描述的偏中性函数分数微分方程。所使用的分数算子是 Caputo 导数。本文定义了分数解析算子,并用它来证明分数中性微分方程唯一解的存在性。存在性研究中使用了定点定理。为了说明本文的结果,还提供了一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness study for partial neutral functional fractional differential equation under Caputo derivative
The partial neutral functional fractional differential equation described by the fractional operator is considered in the present investigation. The used fractional operator is the Caputo derivative. In the present paper, the fractional resolvent operators have been defined and used to prove the existence of the unique solution of the fractional neutral differential equations. The fixed point theorem has been used in existence investigations. For an illustration of our results in this paper, an example has been provided as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信