探索线性二阶锥编程的无约束条件最优化条件

O. Kostyukova, T. Tchemisova
{"title":"探索线性二阶锥编程的无约束条件最优化条件","authors":"O. Kostyukova, T. Tchemisova","doi":"10.11121/ijocta.1421","DOIUrl":null,"url":null,"abstract":"Linear second-order cone programming (SOCP) deals with optimization problems characterized by a linear objective function and a feasible region defined by linear equalities and second-order cone constraints. These constraints involve the norm of a linear combination of variables, enabling the representation of a wide range of convex sets. The SOCP serves as a potent tool for addressing optimization challenges across engineering, finance, machine learning, and various other domains. In this paper, we introduce new optimality conditions tailored for {SOCP} problems. These conditions have the form of two optimality criteria that are obtained without the requirement of any constraint qualifications and are defined explicitly. The first criterion utilizes the concept of immobile indices of constraints. The second criterion, without relying explicitly on immobile indices, introduces a special finite vector set for assessing optimality. To demonstrate the effectiveness of these criteria, we present two illustrative examples highlighting their applicability. We compare the obtained criteria with other known optimality conditions and show the advantage of the former ones.","PeriodicalId":505378,"journal":{"name":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","volume":"78 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring constraint qualification-free optimality conditions for linear second-order cone programming\",\"authors\":\"O. Kostyukova, T. Tchemisova\",\"doi\":\"10.11121/ijocta.1421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear second-order cone programming (SOCP) deals with optimization problems characterized by a linear objective function and a feasible region defined by linear equalities and second-order cone constraints. These constraints involve the norm of a linear combination of variables, enabling the representation of a wide range of convex sets. The SOCP serves as a potent tool for addressing optimization challenges across engineering, finance, machine learning, and various other domains. In this paper, we introduce new optimality conditions tailored for {SOCP} problems. These conditions have the form of two optimality criteria that are obtained without the requirement of any constraint qualifications and are defined explicitly. The first criterion utilizes the concept of immobile indices of constraints. The second criterion, without relying explicitly on immobile indices, introduces a special finite vector set for assessing optimality. To demonstrate the effectiveness of these criteria, we present two illustrative examples highlighting their applicability. We compare the obtained criteria with other known optimality conditions and show the advantage of the former ones.\",\"PeriodicalId\":505378,\"journal\":{\"name\":\"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)\",\"volume\":\"78 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.1421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.1421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性二阶锥体程序设计(SOCP)处理的是以线性目标函数和由线性等式和二阶锥体约束条件定义的可行区域为特征的优化问题。这些约束条件涉及变量线性组合的规范,可以表示各种凸集。SOCP 是解决工程、金融、机器学习和其他各种领域优化难题的有力工具。在本文中,我们介绍了为{SOCP}问题量身定制的新优化条件。这些条件由两个最优性标准组成,无需任何约束条件即可获得,并且定义明确。第一个标准利用了约束条件不动指数的概念。第二个标准没有明确依赖不动指数,而是引入了一个特殊的有限向量集来评估最优性。为了证明这些标准的有效性,我们列举了两个示例来突出它们的适用性。我们将获得的标准与其他已知的最优性条件进行了比较,并显示了前者的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring constraint qualification-free optimality conditions for linear second-order cone programming
Linear second-order cone programming (SOCP) deals with optimization problems characterized by a linear objective function and a feasible region defined by linear equalities and second-order cone constraints. These constraints involve the norm of a linear combination of variables, enabling the representation of a wide range of convex sets. The SOCP serves as a potent tool for addressing optimization challenges across engineering, finance, machine learning, and various other domains. In this paper, we introduce new optimality conditions tailored for {SOCP} problems. These conditions have the form of two optimality criteria that are obtained without the requirement of any constraint qualifications and are defined explicitly. The first criterion utilizes the concept of immobile indices of constraints. The second criterion, without relying explicitly on immobile indices, introduces a special finite vector set for assessing optimality. To demonstrate the effectiveness of these criteria, we present two illustrative examples highlighting their applicability. We compare the obtained criteria with other known optimality conditions and show the advantage of the former ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信