Theodore W. Callis, Kexin Hu, Hani Al Jamal, M. Tentzeris
{"title":"用于多输入多输出(MIMO)、物联网、数字双胞胎和智能城市应用的快速成型柔性 5G 电子产品","authors":"Theodore W. Callis, Kexin Hu, Hani Al Jamal, M. Tentzeris","doi":"10.1142/s0129156424400664","DOIUrl":null,"url":null,"abstract":"This review encompasses additive manufacturing techniques for crafting 5G electronics, showcasing how these methods innovate device creation with novel examples. A wearable phased array device on commonplace 3D printed material is described, with integrated microfluidic cooling channels used for thermal regulation of integrated circuit bulk components. Mechanical and electrical tunability are exemplified in an origami-inspired phased array structure. A 3D printed IoT cube structure shows the flexibility in the number of geometries additively manufactured 5G devices can adhere to. Finally, integrating 3D optical lenses with 5G electronics is shown.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additively Manufactured, Flexible 5G Electronics for MIMO, IoT, Digital Twins, and Smart Cities Applications\",\"authors\":\"Theodore W. Callis, Kexin Hu, Hani Al Jamal, M. Tentzeris\",\"doi\":\"10.1142/s0129156424400664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review encompasses additive manufacturing techniques for crafting 5G electronics, showcasing how these methods innovate device creation with novel examples. A wearable phased array device on commonplace 3D printed material is described, with integrated microfluidic cooling channels used for thermal regulation of integrated circuit bulk components. Mechanical and electrical tunability are exemplified in an origami-inspired phased array structure. A 3D printed IoT cube structure shows the flexibility in the number of geometries additively manufactured 5G devices can adhere to. Finally, integrating 3D optical lenses with 5G electronics is shown.\",\"PeriodicalId\":35778,\"journal\":{\"name\":\"International Journal of High Speed Electronics and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Speed Electronics and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129156424400664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156424400664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
本综述涵盖了用于制作 5G 电子设备的增材制造技术,通过新颖的实例展示了这些方法如何创新设备的制作。文中介绍了一种使用普通 3D 打印材料制造的可穿戴相控阵设备,该设备集成了微流体冷却通道,用于对集成电路散装元件进行热调节。受折纸启发的相控阵结构体现了机械和电气可调性。三维打印的物联网立方体结构展示了添加制造的 5G 设备所能遵循的几何形状数量的灵活性。最后,还展示了三维光学透镜与 5G 电子设备的集成。
Additively Manufactured, Flexible 5G Electronics for MIMO, IoT, Digital Twins, and Smart Cities Applications
This review encompasses additive manufacturing techniques for crafting 5G electronics, showcasing how these methods innovate device creation with novel examples. A wearable phased array device on commonplace 3D printed material is described, with integrated microfluidic cooling channels used for thermal regulation of integrated circuit bulk components. Mechanical and electrical tunability are exemplified in an origami-inspired phased array structure. A 3D printed IoT cube structure shows the flexibility in the number of geometries additively manufactured 5G devices can adhere to. Finally, integrating 3D optical lenses with 5G electronics is shown.
期刊介绍:
Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.