开发设计单轴太阳传感器太阳能跟踪系统

Energies Pub Date : 2024-07-12 DOI:10.3390/en17143442
Abdulrhman Alshaabani
{"title":"开发设计单轴太阳传感器太阳能跟踪系统","authors":"Abdulrhman Alshaabani","doi":"10.3390/en17143442","DOIUrl":null,"url":null,"abstract":"This paper proposes a new technique for a single-direction solar tracker. The proposed design is based on a sun sensor system that controls the position of the solar panel. The sun sensors of the proposed design contain four photodiodes that are placed on the solar panel in specific angles and directions. The proposed system has several advantages such as the simplicity of implementing the system. This system combines the real-time tracking of sunlight and the low cost of applying a single-direction tracker. The prototyping experiment and Simulink MATLAB were applied to show the advantages of applying a single-direction tracker by following the angle of sunlight during the day. Real-time sun position and irradiation data were applied. The experimental results show that the proposed single-axis sun sensor PV tracker system generates around 20 more electric power than a fixed-structure PV system.","PeriodicalId":504870,"journal":{"name":"Energies","volume":"4 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing the Design of Single-Axis Sun Sensor Solar Tracking System\",\"authors\":\"Abdulrhman Alshaabani\",\"doi\":\"10.3390/en17143442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new technique for a single-direction solar tracker. The proposed design is based on a sun sensor system that controls the position of the solar panel. The sun sensors of the proposed design contain four photodiodes that are placed on the solar panel in specific angles and directions. The proposed system has several advantages such as the simplicity of implementing the system. This system combines the real-time tracking of sunlight and the low cost of applying a single-direction tracker. The prototyping experiment and Simulink MATLAB were applied to show the advantages of applying a single-direction tracker by following the angle of sunlight during the day. Real-time sun position and irradiation data were applied. The experimental results show that the proposed single-axis sun sensor PV tracker system generates around 20 more electric power than a fixed-structure PV system.\",\"PeriodicalId\":504870,\"journal\":{\"name\":\"Energies\",\"volume\":\"4 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/en17143442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种单向太阳能跟踪器的新技术。建议的设计基于一个控制太阳能电池板位置的太阳传感器系统。拟议设计的太阳传感器包含四个光电二极管,按特定角度和方向放置在太阳能电池板上。所提议的系统有几个优点,如系统实施简单。该系统结合了对太阳光的实时跟踪和单向跟踪器的低成本应用。应用原型实验和 Simulink MATLAB 展示了应用单向跟踪器在白天跟踪太阳光角度的优势。应用了实时太阳位置和辐照数据。实验结果表明,拟议的单轴太阳传感器光伏跟踪器系统比固定结构光伏系统多发电约 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing the Design of Single-Axis Sun Sensor Solar Tracking System
This paper proposes a new technique for a single-direction solar tracker. The proposed design is based on a sun sensor system that controls the position of the solar panel. The sun sensors of the proposed design contain four photodiodes that are placed on the solar panel in specific angles and directions. The proposed system has several advantages such as the simplicity of implementing the system. This system combines the real-time tracking of sunlight and the low cost of applying a single-direction tracker. The prototyping experiment and Simulink MATLAB were applied to show the advantages of applying a single-direction tracker by following the angle of sunlight during the day. Real-time sun position and irradiation data were applied. The experimental results show that the proposed single-axis sun sensor PV tracker system generates around 20 more electric power than a fixed-structure PV system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信