consICA:用于多组学数据鲁棒无参照解卷积的 R 软件包

Maryna K. Chepeleva, T. Kaoma, Andrei Zinovyev, Reka Toth, Petr V Nazarov
{"title":"consICA:用于多组学数据鲁棒无参照解卷积的 R 软件包","authors":"Maryna K. Chepeleva, T. Kaoma, Andrei Zinovyev, Reka Toth, Petr V Nazarov","doi":"10.1093/bioadv/vbae102","DOIUrl":null,"url":null,"abstract":"\n \n \n Deciphering molecular signals from omics data helps for understanding cellular processes and disease progression. Effective algorithms for extracting these signals are essential, with a strong emphasis on robustness and reproducibility.\n \n \n \n R/Bioconductor package consICA implements consensus independent component analysis (ICA) – a data-driven deconvolution method to decompose heterogeneous omics data and extract features suitable for patient stratification and multimodal data integration. The method separates biologically relevant molecular signals from technical effects and provides information about the cellular composition and biological processes. Build-in annotation, survival analysis and report generation provide useful tools for interpretation of extracted signals. The implementation of parallel computing in the package ensures efficient analysis using modern multicore systems. The package offers a reproducible and efficient data-driven solution for the analysis of complex molecular profiles, with significant implications for cancer research.\n \n \n \n The package is implemented in R and available under MIT license at Bioconductor (https://bioconductor.org/packages/consICA) or at GitHub (https://github.com/biomod-lih/consICA\n \n \n \n Supplementary data are available at Bioinformatics Advances online.\n","PeriodicalId":505477,"journal":{"name":"Bioinformatics Advances","volume":"49 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"consICA: an R package for robust reference-free deconvolution of multi-omics data\",\"authors\":\"Maryna K. Chepeleva, T. Kaoma, Andrei Zinovyev, Reka Toth, Petr V Nazarov\",\"doi\":\"10.1093/bioadv/vbae102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n Deciphering molecular signals from omics data helps for understanding cellular processes and disease progression. Effective algorithms for extracting these signals are essential, with a strong emphasis on robustness and reproducibility.\\n \\n \\n \\n R/Bioconductor package consICA implements consensus independent component analysis (ICA) – a data-driven deconvolution method to decompose heterogeneous omics data and extract features suitable for patient stratification and multimodal data integration. The method separates biologically relevant molecular signals from technical effects and provides information about the cellular composition and biological processes. Build-in annotation, survival analysis and report generation provide useful tools for interpretation of extracted signals. The implementation of parallel computing in the package ensures efficient analysis using modern multicore systems. The package offers a reproducible and efficient data-driven solution for the analysis of complex molecular profiles, with significant implications for cancer research.\\n \\n \\n \\n The package is implemented in R and available under MIT license at Bioconductor (https://bioconductor.org/packages/consICA) or at GitHub (https://github.com/biomod-lih/consICA\\n \\n \\n \\n Supplementary data are available at Bioinformatics Advances online.\\n\",\"PeriodicalId\":505477,\"journal\":{\"name\":\"Bioinformatics Advances\",\"volume\":\"49 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

破译 omics 数据中的分子信号有助于了解细胞过程和疾病进展。提取这些信号的有效算法是必不可少的,其中非常强调稳健性和可重复性。 R/Bioconductor 软件包 consICA 实现了共识独立成分分析(ICA)--一种数据驱动的解卷积方法,用于分解异构的 omics 数据并提取适合患者分层和多模态数据整合的特征。该方法可将与生物相关的分子信号从技术效应中分离出来,并提供有关细胞组成和生物过程的信息。内置注释、生存分析和报告生成为解读提取的信号提供了有用的工具。软件包中的并行计算功能可确保使用现代多核系统进行高效分析。该软件包为复杂分子谱的分析提供了可重复和高效的数据驱动解决方案,对癌症研究具有重要意义。 该软件包用 R 语言实现,可在 MIT 许可下从 Bioconductor (https://bioconductor.org/packages/consICA) 或 GitHub (https://github.com/biomod-lih/consICA) 获取。补充数据可从 Bioinformatics Advances 在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
consICA: an R package for robust reference-free deconvolution of multi-omics data
Deciphering molecular signals from omics data helps for understanding cellular processes and disease progression. Effective algorithms for extracting these signals are essential, with a strong emphasis on robustness and reproducibility. R/Bioconductor package consICA implements consensus independent component analysis (ICA) – a data-driven deconvolution method to decompose heterogeneous omics data and extract features suitable for patient stratification and multimodal data integration. The method separates biologically relevant molecular signals from technical effects and provides information about the cellular composition and biological processes. Build-in annotation, survival analysis and report generation provide useful tools for interpretation of extracted signals. The implementation of parallel computing in the package ensures efficient analysis using modern multicore systems. The package offers a reproducible and efficient data-driven solution for the analysis of complex molecular profiles, with significant implications for cancer research. The package is implemented in R and available under MIT license at Bioconductor (https://bioconductor.org/packages/consICA) or at GitHub (https://github.com/biomod-lih/consICA Supplementary data are available at Bioinformatics Advances online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信