面向神经网络应用的量子点晶体管内存计算结构:从模拟电路到存储器阵列

Q4 Engineering
Yang Zhao, Faquir Jain, Lei Wang
{"title":"面向神经网络应用的量子点晶体管内存计算结构:从模拟电路到存储器阵列","authors":"Yang Zhao, Faquir Jain, Lei Wang","doi":"10.1142/s0129156424400597","DOIUrl":null,"url":null,"abstract":"The rapid advancements in artificial intelligence (AI) have demonstrated great success in various applications, such as cloud computing, deep learning, and neural networks, among others. However, the majority of these applications rely on fast computation and large storage, which poses significant challenges to the hardware platform. Thus, there is a growing interest in exploring new computation architectures to address these challenges. Compute-in-memory (CIM) has emerged as a promising solution to overcome the challenges posed by traditional computer architecture in terms of data transfer frequency and energy consumption. Non-volatile memory, such as Quantum-dot transistors, has been widely used in CIM to provide high-speed processing, low power consumption, and large storage capacity. Matrix-vector multiplication (MVM) or dot product operation is a primary computational kernel in neural networks. CIM offers an effective way to optimize the performance of the dot product operation by performing it through an intertwining of processing and memory elements. In this paper, we present a novel design and analysis of a Quantum-dot transistor (QDT) based CIM that offers efficient MVM or dot product operation by performing computations inside the memory array itself. Our proposed approach offers energy-efficient and high-speed data processing capabilities that are critical for implementing AI applications on resource-limited platforms such as portable devices.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An In-Memory-Computing Structure with Quantum-Dot Transistor Toward Neural Network Applications: From Analog Circuits to Memory Arrays\",\"authors\":\"Yang Zhao, Faquir Jain, Lei Wang\",\"doi\":\"10.1142/s0129156424400597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid advancements in artificial intelligence (AI) have demonstrated great success in various applications, such as cloud computing, deep learning, and neural networks, among others. However, the majority of these applications rely on fast computation and large storage, which poses significant challenges to the hardware platform. Thus, there is a growing interest in exploring new computation architectures to address these challenges. Compute-in-memory (CIM) has emerged as a promising solution to overcome the challenges posed by traditional computer architecture in terms of data transfer frequency and energy consumption. Non-volatile memory, such as Quantum-dot transistors, has been widely used in CIM to provide high-speed processing, low power consumption, and large storage capacity. Matrix-vector multiplication (MVM) or dot product operation is a primary computational kernel in neural networks. CIM offers an effective way to optimize the performance of the dot product operation by performing it through an intertwining of processing and memory elements. In this paper, we present a novel design and analysis of a Quantum-dot transistor (QDT) based CIM that offers efficient MVM or dot product operation by performing computations inside the memory array itself. Our proposed approach offers energy-efficient and high-speed data processing capabilities that are critical for implementing AI applications on resource-limited platforms such as portable devices.\",\"PeriodicalId\":35778,\"journal\":{\"name\":\"International Journal of High Speed Electronics and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Speed Electronics and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129156424400597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156424400597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)的快速发展在云计算、深度学习和神经网络等各种应用中取得了巨大成功。然而,这些应用大多依赖于快速计算和大容量存储,这给硬件平台带来了巨大挑战。因此,人们越来越有兴趣探索新的计算架构来应对这些挑战。为克服传统计算机架构在数据传输频率和能耗方面带来的挑战,内存计算(CIM)已成为一种前景广阔的解决方案。量子点晶体管等非易失性存储器已广泛应用于 CIM,以提供高速处理、低功耗和大容量存储。矩阵向量乘法(MVM)或点积运算是神经网络的主要计算内核。CIM 通过交织处理和内存元素来执行点乘运算,为优化点乘运算性能提供了有效途径。在本文中,我们介绍了一种基于量子点晶体管(QDT)的 CIM 的新型设计和分析方法,该方法通过在内存阵列内部执行计算来提供高效的 MVM 或点乘运算。我们提出的方法具有高能效和高速数据处理能力,这对于在便携式设备等资源有限的平台上实现人工智能应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An In-Memory-Computing Structure with Quantum-Dot Transistor Toward Neural Network Applications: From Analog Circuits to Memory Arrays
The rapid advancements in artificial intelligence (AI) have demonstrated great success in various applications, such as cloud computing, deep learning, and neural networks, among others. However, the majority of these applications rely on fast computation and large storage, which poses significant challenges to the hardware platform. Thus, there is a growing interest in exploring new computation architectures to address these challenges. Compute-in-memory (CIM) has emerged as a promising solution to overcome the challenges posed by traditional computer architecture in terms of data transfer frequency and energy consumption. Non-volatile memory, such as Quantum-dot transistors, has been widely used in CIM to provide high-speed processing, low power consumption, and large storage capacity. Matrix-vector multiplication (MVM) or dot product operation is a primary computational kernel in neural networks. CIM offers an effective way to optimize the performance of the dot product operation by performing it through an intertwining of processing and memory elements. In this paper, we present a novel design and analysis of a Quantum-dot transistor (QDT) based CIM that offers efficient MVM or dot product operation by performing computations inside the memory array itself. Our proposed approach offers energy-efficient and high-speed data processing capabilities that are critical for implementing AI applications on resource-limited platforms such as portable devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of High Speed Electronics and Systems
International Journal of High Speed Electronics and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.60
自引率
0.00%
发文量
22
期刊介绍: Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信