Shijie Su, Yushuo Chen, Cunjun Li, Kai Ni, Jian Zhang
{"title":"通过 CPG 和深度强化学习实现机器人 Manta 的智能控制策略","authors":"Shijie Su, Yushuo Chen, Cunjun Li, Kai Ni, Jian Zhang","doi":"10.3390/drones8070323","DOIUrl":null,"url":null,"abstract":"The robotic manta has attracted significant interest for its exceptional maneuverability, swimming efficiency, and stealthiness. However, achieving efficient autonomous swimming in complex underwater environments presents a significant challenge. To address this issue, this study integrates Deep Deterministic Policy Gradient (DDPG) with Central Pattern Generators (CPGs) and proposes a CPG-based DDPG control strategy. First, we designed a CPG control strategy that can more precisely mimic the swimming behavior of the manta. Then, we implemented the DDPG algorithm as a high-level controller that adaptively modifies the CPG’s control parameters based on the real-time state information of the robotic manta. This adjustment allows for the regulation of swimming modes to fulfill specific tasks. The proposed strategy underwent initial training and testing in a simulated environment before deployment on a robotic manta prototype for field trials. Both further simulation and experimental results validate the effectiveness and practicality of the proposed control strategy.","PeriodicalId":507567,"journal":{"name":"Drones","volume":"23 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Control Strategy for Robotic Manta via CPG and Deep Reinforcement Learning\",\"authors\":\"Shijie Su, Yushuo Chen, Cunjun Li, Kai Ni, Jian Zhang\",\"doi\":\"10.3390/drones8070323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The robotic manta has attracted significant interest for its exceptional maneuverability, swimming efficiency, and stealthiness. However, achieving efficient autonomous swimming in complex underwater environments presents a significant challenge. To address this issue, this study integrates Deep Deterministic Policy Gradient (DDPG) with Central Pattern Generators (CPGs) and proposes a CPG-based DDPG control strategy. First, we designed a CPG control strategy that can more precisely mimic the swimming behavior of the manta. Then, we implemented the DDPG algorithm as a high-level controller that adaptively modifies the CPG’s control parameters based on the real-time state information of the robotic manta. This adjustment allows for the regulation of swimming modes to fulfill specific tasks. The proposed strategy underwent initial training and testing in a simulated environment before deployment on a robotic manta prototype for field trials. Both further simulation and experimental results validate the effectiveness and practicality of the proposed control strategy.\",\"PeriodicalId\":507567,\"journal\":{\"name\":\"Drones\",\"volume\":\"23 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones8070323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones8070323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intelligent Control Strategy for Robotic Manta via CPG and Deep Reinforcement Learning
The robotic manta has attracted significant interest for its exceptional maneuverability, swimming efficiency, and stealthiness. However, achieving efficient autonomous swimming in complex underwater environments presents a significant challenge. To address this issue, this study integrates Deep Deterministic Policy Gradient (DDPG) with Central Pattern Generators (CPGs) and proposes a CPG-based DDPG control strategy. First, we designed a CPG control strategy that can more precisely mimic the swimming behavior of the manta. Then, we implemented the DDPG algorithm as a high-level controller that adaptively modifies the CPG’s control parameters based on the real-time state information of the robotic manta. This adjustment allows for the regulation of swimming modes to fulfill specific tasks. The proposed strategy underwent initial training and testing in a simulated environment before deployment on a robotic manta prototype for field trials. Both further simulation and experimental results validate the effectiveness and practicality of the proposed control strategy.