Jiaqi Liu, Yanxin Hu, Qianfu Su, Jianwei Guo, Zhiyu Chen, Gang Liu
{"title":"针对玉米叶片病害的半监督式单阶段目标检测","authors":"Jiaqi Liu, Yanxin Hu, Qianfu Su, Jianwei Guo, Zhiyu Chen, Gang Liu","doi":"10.3390/agriculture14071140","DOIUrl":null,"url":null,"abstract":"Maize is one of the most important crops globally, and accurate diagnosis of leaf diseases is crucial for ensuring increased yields. Despite the continuous progress in computer vision technology, detecting maize leaf diseases based on deep learning still relies on a large amount of manually labeled data, and the labeling process is time-consuming and labor-intensive. Moreover, the detectors currently used for identifying maize leaf diseases have relatively low accuracy in complex experimental fields. Therefore, the proposed Agronomic Teacher, an object detection algorithm that utilizes limited labeled and abundant unlabeled data, is applied to maize leaf disease recognition. In this work, a semi-supervised object detection framework is built based on a single-stage detector, integrating the Weighted Average Pseudo-labeling Assignment (WAP) strategy and AgroYOLO detector combining Agro-Backbone network with Agro-Neck network. The WAP strategy uses weight adjustments to set objectness and classification scores as evaluation criteria for pseudo-labels reliability assignment. Agro-Backbone network accurately extracts features of maize leaf diseases and obtains richer semantic information. Agro-Neck network enhances feature fusion by utilizing multi-layer features for collaborative combinations. The effectiveness of the proposed method is validated on the MaizeData and PascalVOC datasets at different annotation ratios. Compared to the baseline model, Agronomic Teacher leverages abundant unlabeled data to achieve a 6.5% increase in mAP (0.5) on the 30% labeled MaizeData. On the 30% labeled PascalVOC dataset, the mAP (0.5) improved by 8.2%, demonstrating the method’s potential for generalization.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":"44 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised One-Stage Object Detection for Maize Leaf Disease\",\"authors\":\"Jiaqi Liu, Yanxin Hu, Qianfu Su, Jianwei Guo, Zhiyu Chen, Gang Liu\",\"doi\":\"10.3390/agriculture14071140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maize is one of the most important crops globally, and accurate diagnosis of leaf diseases is crucial for ensuring increased yields. Despite the continuous progress in computer vision technology, detecting maize leaf diseases based on deep learning still relies on a large amount of manually labeled data, and the labeling process is time-consuming and labor-intensive. Moreover, the detectors currently used for identifying maize leaf diseases have relatively low accuracy in complex experimental fields. Therefore, the proposed Agronomic Teacher, an object detection algorithm that utilizes limited labeled and abundant unlabeled data, is applied to maize leaf disease recognition. In this work, a semi-supervised object detection framework is built based on a single-stage detector, integrating the Weighted Average Pseudo-labeling Assignment (WAP) strategy and AgroYOLO detector combining Agro-Backbone network with Agro-Neck network. The WAP strategy uses weight adjustments to set objectness and classification scores as evaluation criteria for pseudo-labels reliability assignment. Agro-Backbone network accurately extracts features of maize leaf diseases and obtains richer semantic information. Agro-Neck network enhances feature fusion by utilizing multi-layer features for collaborative combinations. The effectiveness of the proposed method is validated on the MaizeData and PascalVOC datasets at different annotation ratios. Compared to the baseline model, Agronomic Teacher leverages abundant unlabeled data to achieve a 6.5% increase in mAP (0.5) on the 30% labeled MaizeData. On the 30% labeled PascalVOC dataset, the mAP (0.5) improved by 8.2%, demonstrating the method’s potential for generalization.\",\"PeriodicalId\":7447,\"journal\":{\"name\":\"Agriculture\",\"volume\":\"44 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14071140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14071140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Semi-Supervised One-Stage Object Detection for Maize Leaf Disease
Maize is one of the most important crops globally, and accurate diagnosis of leaf diseases is crucial for ensuring increased yields. Despite the continuous progress in computer vision technology, detecting maize leaf diseases based on deep learning still relies on a large amount of manually labeled data, and the labeling process is time-consuming and labor-intensive. Moreover, the detectors currently used for identifying maize leaf diseases have relatively low accuracy in complex experimental fields. Therefore, the proposed Agronomic Teacher, an object detection algorithm that utilizes limited labeled and abundant unlabeled data, is applied to maize leaf disease recognition. In this work, a semi-supervised object detection framework is built based on a single-stage detector, integrating the Weighted Average Pseudo-labeling Assignment (WAP) strategy and AgroYOLO detector combining Agro-Backbone network with Agro-Neck network. The WAP strategy uses weight adjustments to set objectness and classification scores as evaluation criteria for pseudo-labels reliability assignment. Agro-Backbone network accurately extracts features of maize leaf diseases and obtains richer semantic information. Agro-Neck network enhances feature fusion by utilizing multi-layer features for collaborative combinations. The effectiveness of the proposed method is validated on the MaizeData and PascalVOC datasets at different annotation ratios. Compared to the baseline model, Agronomic Teacher leverages abundant unlabeled data to achieve a 6.5% increase in mAP (0.5) on the 30% labeled MaizeData. On the 30% labeled PascalVOC dataset, the mAP (0.5) improved by 8.2%, demonstrating the method’s potential for generalization.
AgricultureAgricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍:
The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.