重新审视洛伦兹误差增长模型:启示与应用

Bo-Wen Shen
{"title":"重新审视洛伦兹误差增长模型:启示与应用","authors":"Bo-Wen Shen","doi":"10.3390/encyclopedia4030073","DOIUrl":null,"url":null,"abstract":"This entry examines Lorenz’s error growth models with quadratic and cubic hypotheses, highlighting their mathematical connections to the non-dissipative Lorenz 1963 model. The quadratic error growth model is the logistic ordinary differential equation (ODE) with a quadratic nonlinear term, while the cubic model is derived by replacing the quadratic term with a cubic one. A variable transformation shows that the cubic model can be converted to the same form as the logistic ODE. The relationship between the continuous logistic ODE and its discrete version, the logistic map, illustrates chaotic behaviors, demonstrating computational chaos with large time steps. A variant of the logistic ODE is proposed to show how finite predictability horizons can be determined, emphasizing the continuous dependence on initial conditions (CDIC) related to stable and unstable asymptotic values. This review also presents the mathematical relationship between the logistic ODE and the non-dissipative Lorenz 1963 model.","PeriodicalId":504869,"journal":{"name":"Encyclopedia","volume":"52 32","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting Lorenz’s Error Growth Models: Insights and Applications\",\"authors\":\"Bo-Wen Shen\",\"doi\":\"10.3390/encyclopedia4030073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This entry examines Lorenz’s error growth models with quadratic and cubic hypotheses, highlighting their mathematical connections to the non-dissipative Lorenz 1963 model. The quadratic error growth model is the logistic ordinary differential equation (ODE) with a quadratic nonlinear term, while the cubic model is derived by replacing the quadratic term with a cubic one. A variable transformation shows that the cubic model can be converted to the same form as the logistic ODE. The relationship between the continuous logistic ODE and its discrete version, the logistic map, illustrates chaotic behaviors, demonstrating computational chaos with large time steps. A variant of the logistic ODE is proposed to show how finite predictability horizons can be determined, emphasizing the continuous dependence on initial conditions (CDIC) related to stable and unstable asymptotic values. This review also presents the mathematical relationship between the logistic ODE and the non-dissipative Lorenz 1963 model.\",\"PeriodicalId\":504869,\"journal\":{\"name\":\"Encyclopedia\",\"volume\":\"52 32\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/encyclopedia4030073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/encyclopedia4030073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本条目研究了具有二次方和三次方假设的洛伦兹误差增长模型,强调了它们与非耗散洛伦兹 1963 模型的数学联系。二次误差增长模型是带有二次非线性项的逻辑常微分方程(ODE),而三次模型则是用三次项代替二次项得出的。变量变换表明,立方模型可以转换为与逻辑 ODE 相同的形式。连续对数 ODE 与离散对数图之间的关系说明了混沌行为,展示了大时间步长下的计算混沌。本文提出了逻辑 ODE 的一个变体,以说明如何确定有限可预测性视界,强调与稳定和不稳定渐近值相关的初始条件连续依赖性(CDIC)。本综述还介绍了逻辑 ODE 与非耗散洛伦兹 1963 模型之间的数学关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting Lorenz’s Error Growth Models: Insights and Applications
This entry examines Lorenz’s error growth models with quadratic and cubic hypotheses, highlighting their mathematical connections to the non-dissipative Lorenz 1963 model. The quadratic error growth model is the logistic ordinary differential equation (ODE) with a quadratic nonlinear term, while the cubic model is derived by replacing the quadratic term with a cubic one. A variable transformation shows that the cubic model can be converted to the same form as the logistic ODE. The relationship between the continuous logistic ODE and its discrete version, the logistic map, illustrates chaotic behaviors, demonstrating computational chaos with large time steps. A variant of the logistic ODE is proposed to show how finite predictability horizons can be determined, emphasizing the continuous dependence on initial conditions (CDIC) related to stable and unstable asymptotic values. This review also presents the mathematical relationship between the logistic ODE and the non-dissipative Lorenz 1963 model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信