论跨时间尺度的一些新动态希尔伯特式不等式

Axioms Pub Date : 2024-07-14 DOI:10.3390/axioms13070475
M. Zakarya, A. Saied, Amirah Ayidh I Al-Thaqfan, M. Ali, H. M. Rezk
{"title":"论跨时间尺度的一些新动态希尔伯特式不等式","authors":"M. Zakarya, A. Saied, Amirah Ayidh I Al-Thaqfan, M. Ali, H. M. Rezk","doi":"10.3390/axioms13070475","DOIUrl":null,"url":null,"abstract":"In this article, we present some novel dynamic Hilbert-type inequalities within the framework of time scales T. We achieve this by utilizing Hölder’s inequality, the chain rule, and the mean inequality. As specific instances of our findings (when T=N and T=R), we obtain the discrete and continuous analogues of previously established inequalities. Additionally, we derive other inequalities for different time scales, such as T=qN0 for q>1, which, to the best of the authors’ knowledge, is a largely novel conclusion.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"8 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some New Dynamic Hilbert-Type Inequalities Across Time Scales\",\"authors\":\"M. Zakarya, A. Saied, Amirah Ayidh I Al-Thaqfan, M. Ali, H. M. Rezk\",\"doi\":\"10.3390/axioms13070475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present some novel dynamic Hilbert-type inequalities within the framework of time scales T. We achieve this by utilizing Hölder’s inequality, the chain rule, and the mean inequality. As specific instances of our findings (when T=N and T=R), we obtain the discrete and continuous analogues of previously established inequalities. Additionally, we derive other inequalities for different time scales, such as T=qN0 for q>1, which, to the best of the authors’ knowledge, is a largely novel conclusion.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用荷尔德不等式、链式法则和均值不等式,在时间尺度 T 的框架内提出了一些新颖的动态希尔伯特式不等式。作为我们研究成果的具体实例(当 T=N 和 T=R 时),我们得到了以前建立的不等式的离散和连续类比。此外,我们还推导出了不同时间尺度的其他不等式,例如 q>1 时的 T=qN0,据作者所知,这在很大程度上是一个新结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some New Dynamic Hilbert-Type Inequalities Across Time Scales
In this article, we present some novel dynamic Hilbert-type inequalities within the framework of time scales T. We achieve this by utilizing Hölder’s inequality, the chain rule, and the mean inequality. As specific instances of our findings (when T=N and T=R), we obtain the discrete and continuous analogues of previously established inequalities. Additionally, we derive other inequalities for different time scales, such as T=qN0 for q>1, which, to the best of the authors’ knowledge, is a largely novel conclusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信